1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
*DECK PCRTRP
SUBROUTINE PCRTRP(LCUB2,IMPX,NPAR,NCAL,NVALUE,MUPLET,MUTYPE,VALR,
1 VARVAL,MUBASE,VREAL,TERP)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the TERP interpolation/derivation/integration factors using
* table-of-content information of the PMAXS file.
*
*Copyright:
* Copyright (C) 2018 Ecole Polytechnique de Montreal
*
*Author(s):
* A. Hebert
*
*Parameters: input
* LCUB2 interpolation type for each parameter (=.TRUE.: cubic Ceschino
* interpolation; =.FALSE: linear Lagrange interpolation).
* IMPX print parameter (equal to zero for no print).
* NPAR number of parameters.
* NCAL number of elementary calculations in the PMAXS file.
* NVALUE number of tabulation values for each parameter.
* MUPLET tuple used to identify an elementary calculation.
* MUTYPE type of interpolation (=1: interpolation; =2: delta-sigma).
* VALR real values of the interpolated point.
* VARVAL exit burnup used if MUTYPE(IPAR(ID))=3.
* MUBASE muplet database.
* VREAL local parameter values at tabulation points.
*
*Parameters: output
* TERP interpolation factors.
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER, PARAMETER::MAXVAL=200
INTEGER, PARAMETER::MAXPAR=50
INTEGER IMPX,NPAR,NCAL,NVALUE(NPAR),MUPLET(NPAR),MUTYPE(NPAR),
1 MUBASE(NPAR,NCAL)
REAL VALR(MAXPAR,2),VARVAL,VREAL(MAXVAL,MAXPAR),TERP(NCAL)
LOGICAL LCUB2(NPAR)
*----
* LOCAL VARIABLES
*----
INTEGER, PARAMETER::IOUT=6
INTEGER, PARAMETER::MAXDIM=10
INTEGER IPAR(MAXDIM),NVAL(MAXDIM),IDDIV(MAXDIM)
REAL T1D(MAXVAL,MAXDIM),WORK(MAXVAL)
REAL BURN0, BURN1, DENOM, TERTMP
INTEGER ICAL, IDTMP, IDTOT, ID, I, JD, NDELTA, NDIM, NID, NTOT,
1 IIPAR, MCRCAL
CHARACTER HSMG*131,RECNAM*12
LOGICAL LCUBIC,LSINGL
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: TERPA
*----
* COMPUTE TERP FACTORS
*----
TERP(:NCAL)=0.0
IPAR(:MAXDIM)=0
NDIM=0
NDELTA=0
DO 10 I=1,NPAR
IF(MUPLET(I).EQ.-1) THEN
NDIM=NDIM+1
IF(MUTYPE(I).NE.1) NDELTA=NDELTA+1
IF(NDIM.GT.MAXDIM) THEN
WRITE(HSMG,'(7HPCRTRP:,I4,29H-DIMENSIONAL INTERPOLATION NO,
1 14HT IMPLEMENTED.)') NDIM
CALL XABORT(HSMG)
ENDIF
IPAR(NDIM)=I
ENDIF
10 CONTINUE
IF(IMPX.GT.2) THEN
WRITE(IOUT,'(16H PCRTRP: MUPLET=,10I4/(16X,10I4))')
1 (MUPLET(I),I=1,NPAR)
WRITE(IOUT,'(8H PCRTRP:,I4,27H-DIMENSIONAL INTERPOLATION.)')
1 NDIM
ENDIF
IF(NDIM.EQ.0) THEN
ICAL=MCRCAL(NPAR,NCAL,MUPLET,MUBASE)
IF(ICAL.GT.NCAL) CALL XABORT('PCRTRP: TERP OVERFLOW(1).')
IF(ICAL.EQ.0) GO TO 200
IF(ICAL.EQ.-1) GO TO 210
TERP(ICAL)=1.0
ELSE
NTOT=1
IDDIV(:MAXDIM)=1
DO 70 ID=1,NDIM
IIPAR=IPAR(ID)
NID=NVALUE(IIPAR)
NTOT=NTOT*NID
DO 15 IDTMP=1,NDIM-ID
IDDIV(IDTMP)=IDDIV(IDTMP)*NID
15 CONTINUE
BURN0=VALR(IIPAR,1)
BURN1=VALR(IIPAR,2)
LSINGL=(BURN0.EQ.BURN1)
LCUBIC=LCUB2(IIPAR)
IF((MUTYPE(IIPAR).EQ.1).AND.LSINGL) THEN
CALL ALTERP(LCUBIC,NID,VREAL(1,IIPAR),BURN0,.FALSE.,
1 T1D(1,ID))
ELSE IF(MUTYPE(IIPAR).EQ.1) THEN
IF(BURN0.GE.BURN1) CALL XABORT('@PCRTRP: INVALID BURNUP'
1 //' LIMITS(1).')
CALL ALTERI(LCUBIC,NID,VREAL(1,IIPAR),BURN0,BURN1,T1D(1,ID))
DO 20 I=1,NID
T1D(I,ID)=T1D(I,ID)/(BURN1-BURN0)
20 CONTINUE
ELSE IF((MUTYPE(IIPAR).EQ.2).AND.(.NOT.LSINGL)) THEN
CALL ALTERP(LCUBIC,NID,VREAL(1,IIPAR),BURN0,.FALSE.,WORK(1))
CALL ALTERP(LCUBIC,NID,VREAL(1,IIPAR),BURN1,.FALSE.,T1D(1,ID))
DO 30 I=1,NID
T1D(I,ID)=T1D(I,ID)-WORK(I)
30 CONTINUE
ELSE IF((MUTYPE(IIPAR).EQ.2).AND.(LSINGL)) THEN
T1D(:NID,ID)=0.0
ELSE IF(MUTYPE(IIPAR).EQ.3) THEN
* DERIVATIVE WITH RESPECT TO A SINGLE EXIT BURNUP. USE
* EQ.(3.3) OF RICHARD CHAMBON'S THESIS.
IF(BURN0.GE.BURN1) CALL XABORT('@PCRTRP: INVALID BURNUP'
1 //' LIMITS(2).')
IF(RECNAM.NE.'BURN') CALL XABORT('@PCRTRP: BURN EXPECTED.')
ALLOCATE(TERPA(NID))
CALL ALTERI(LCUBIC,NID,VREAL(1,IIPAR),BURN0,BURN1,TERPA(1))
DO 40 I=1,NID
T1D(I,ID)=-TERPA(I)
40 CONTINUE
CALL ALTERP(LCUBIC,NID,VREAL(1,IIPAR),BURN0,.FALSE.,TERPA(1))
DO 50 I=1,NID
T1D(I,ID)=T1D(I,ID)-TERPA(I)*BURN0
50 CONTINUE
CALL ALTERP(LCUBIC,NID,VREAL(1,IIPAR),BURN1,.FALSE.,TERPA(1))
DENOM=VARVAL*(BURN1-BURN0)
DO 60 I=1,NID
T1D(I,ID)=(T1D(I,ID)+TERPA(I)*BURN1)/DENOM
60 CONTINUE
DEALLOCATE(TERPA)
ELSE
CALL XABORT('PCRTRP: INVALID OPTION.')
ENDIF
NVAL(ID)=NID
70 CONTINUE
* Example: NDIM=3, NVALUE=(3,2,2)
* IDTOT 1 2 3 4 5 6 7 8 9 10 11 12
* ID(1) 1 2 3 1 2 3 1 2 3 1 2 3
* ID(2) 1 1 1 2 2 2 1 1 1 2 2 2
* ID(3) 1 1 1 1 1 1 2 2 2 2 2 2
* (NTOT=12, IDDIV=(6,3,1))
DO 100 IDTOT=1,NTOT ! Ex.: IDTOT = 9
TERTMP=1.0
IDTMP=IDTOT
DO 80 JD=1,NDIM ! Ex.: JD = 1,2,3
ID=(IDTMP-1)/IDDIV(JD)+1 ! Ex.: ID(NDIM...1)= 2,1,3
IDTMP=IDTMP-(ID-1)*IDDIV(JD) ! Ex.: IDTMP = 3,3,1
MUPLET(IPAR(NDIM-JD+1))=ID
TERTMP=TERTMP*T1D(ID,NDIM-JD+1)
80 CONTINUE
ICAL=MCRCAL(NPAR,NCAL,MUPLET,MUBASE)
IF(ICAL.GT.NCAL) CALL XABORT('PCRTRP: TERP OVERFLOW(2).')
IF(ICAL.EQ.0) GO TO 200
IF(ICAL.EQ.-1) GO TO 210
TERP(ICAL)=TERP(ICAL)+TERTMP
100 CONTINUE
ENDIF
IF(IMPX.GT.3) THEN
WRITE(IOUT,'(25H PCRTRP: TERP PARAMETERS:/(1X,1P,10E12.4))')
1 (TERP(I),I=1,NCAL)
ENDIF
RETURN
*----
* MISSING ELEMENTARY CALCULATION EXCEPTION.
*----
200 WRITE(IOUT,'(16H PCRTRP: MUPLET=,10I4/(16X,10I4))')
1 (MUPLET(I),I=1,NPAR)
CALL XABORT('PCRTRP: MISSING ELEMENTARY CALCULATION.')
210 WRITE(IOUT,'(16H PCRTRP: MUPLET=,10I4/(16X,10I4))')
1 (MUPLET(I),I=1,NPAR)
CALL XABORT('PCRTRP: DEGENERATE ELEMENTARY CALCULATION.')
END
|