1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
*DECK NCRTRP
SUBROUTINE NCRTRP(IPCPO,LCUB2,IMPX,IBMOLD,NPAR,NLOC,NCAL,MUPLET,
1 MUTYPE,VALR,VARVAL,TERP)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the TERP interpolation/derivation/integration factors using
* table-of-content information of the multicompo for mixture IBMOLD.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
*
*Author(s):
* A. Hebert, R. Chambon
*
*Parameters: input
* IPCPO address of the multidimensional multicompo object.
* LCUB2 interpolation type for each parameter (=.TRUE.: cubic Ceschino
* interpolation; =.FALSE: linear Lagrange interpolation).
* IMPX print parameter (equal to zero for no print).
* IBMOLD material mixture index in the multicompo.
* NPAR number of global parameters.
* NLOC number of local parameters.
* NCAL number of elementary calculations in the multicompo.
* MUPLET tuple used to identify an elementary calculation.
* MUTYPE type of interpolation (=1: interpolation; =2: delta-sigma).
* VALR real values of the interpolated point.
* VARVAL exit burnup used if MUTYPE(IPAR(ID))=3.
*
*Parameters: output
* TERP interpolation factors.
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER, PARAMETER::MAXPAR=50
TYPE(C_PTR) IPCPO
INTEGER IMPX,IBMOLD,NPAR,NLOC,NCAL,MUPLET(NPAR+NLOC),
1 MUTYPE(NPAR+NLOC)
REAL VALR(2*MAXPAR,2),VARVAL,TERP(NCAL)
LOGICAL LCUB2(NPAR+NLOC)
*----
* LOCAL VARIABLES
*----
INTEGER, PARAMETER::IOUT=6
INTEGER, PARAMETER::MAXDIM=10
INTEGER, PARAMETER::MAXVAL=200
INTEGER IPAR(MAXDIM),NVALUE(MAXPAR),NVAL(MAXDIM),IDDIV(MAXDIM),
1 NVPO(2)
REAL VREAL(MAXVAL),T1D(MAXVAL,MAXDIM),WORK(MAXVAL)
REAL BURN0, BURN1, DENOM, TERTMP
INTEGER ICAL, IDTMP, IDTOT, ID, ILONG, ITYLCM, I, JD, MAXNVP,
& NDELTA, NDIM, NID, NTOT, NCRCAL
CHARACTER HSMG*131,RECNAM*12,PARKEY(MAXPAR)*12
LOGICAL LCUBIC,LSINGL
TYPE(C_PTR) JPCPO,KPCPO,LPCPO
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: JDEBAR,JARBVA
REAL, ALLOCATABLE, DIMENSION(:) :: TERPA
*----
* TRIVAL CASE WHERE NCAL=1
*----
IF(NCAL.EQ.1) THEN
TERP(1)=1.0
GO TO 110
ENDIF
*----
* RECOVER TREE INFORMATION
*----
JPCPO=LCMGID(IPCPO,'GLOBAL')
CALL LCMGTC(JPCPO,'PARKEY',12,NPAR,PARKEY)
JPCPO=LCMGID(IPCPO,'MIXTURES')
KPCPO=LCMGIL(JPCPO,IBMOLD)
LPCPO=LCMGID(KPCPO,'TREE')
CALL LCMGET(LPCPO,'NVP',NVPO)
CALL LCMLEN(LPCPO,'ARBVAL',MAXNVP,ITYLCM)
IF(NVPO(1).GT.MAXNVP) CALL XABORT('NCRTRP: NVP OVERFLOW.')
ALLOCATE(JDEBAR(MAXNVP+1),JARBVA(MAXNVP))
CALL LCMGET(LPCPO,'DEBARB',JDEBAR)
CALL LCMGET(LPCPO,'ARBVAL',JARBVA)
*----
* COMPUTE TERP FACTORS
*----
TERP(:NCAL)=0.0
IPAR(:MAXDIM)=0
NDIM=0
NDELTA=0
DO 10 I=1,NPAR+NLOC
IF(MUPLET(I).EQ.-1) THEN
NDIM=NDIM+1
IF(MUTYPE(I).NE.1) NDELTA=NDELTA+1
IF(NDIM.GT.MAXDIM) THEN
WRITE(HSMG,'(7HNCRTRP:,I4,29H-DIMENSIONAL INTERPOLATION NO,
1 14HT IMPLEMENTED.)') NDIM
CALL XABORT(HSMG)
ENDIF
IPAR(NDIM)=I
ENDIF
10 CONTINUE
IF(IMPX.GT.2) THEN
WRITE(IOUT,'(16H NCRTRP: MUPLET=,10I4/(16X,10I4))')
1 (MUPLET(I),I=1,NPAR)
WRITE(IOUT,'(8H NCRTRP:,I4,31H-DIMENSIONAL INTERPOLATION IN C,
1 12HOMPO MIXTURE,I5,1H.)') NDIM,IBMOLD
ENDIF
IF(NDIM.EQ.0) THEN
ICAL=NCRCAL(1,NVPO(1),NPAR+NLOC,JDEBAR,JARBVA,MUPLET)
IF(ICAL.GT.NCAL) CALL XABORT('NCRTRP: TERP OVERFLOW(1).')
IF(ICAL.EQ.0) GO TO 200
IF(ICAL.EQ.-1) GO TO 210
TERP(ICAL)=1.0
ELSE
NTOT=1
IDDIV(:MAXDIM)=1
DO 70 ID=1,NDIM
IF(IPAR(ID).LE.NPAR) THEN
LPCPO=LCMGID(IPCPO,'GLOBAL')
WRITE(RECNAM,'(''pval'',I8.8)') IPAR(ID)
CALL LCMGET(LPCPO,'NVALUE',NVALUE)
NID=NVALUE(IPAR(ID))
ELSE
JPCPO=LCMGID(IPCPO,'MIXTURES')
KPCPO=LCMGIL(JPCPO,IBMOLD)
LPCPO=LCMGID(KPCPO,'TREE')
WRITE(RECNAM,'(''pval'',I8.8)') IPAR(ID)-NPAR
CALL LCMGET(LPCPO,'NVALUE',NVALUE)
NID=NVALUE(IPAR(ID)-NPAR)
ENDIF
NTOT=NTOT*NID
DO 15 IDTMP=1,NDIM-ID
IDDIV(IDTMP)=IDDIV(IDTMP)*NID
15 CONTINUE
CALL LCMLEN(LPCPO,RECNAM,ILONG,ITYLCM)
IF(ILONG.GT.MAXVAL) CALL XABORT('NCRTRP: MAXVAL OVERFLOW.')
CALL LCMGET(LPCPO,RECNAM,VREAL)
BURN0=VALR(IPAR(ID),1)
BURN1=VALR(IPAR(ID),2)
LSINGL=(BURN0.EQ.BURN1)
LCUBIC=LCUB2(IPAR(ID))
IF((MUTYPE(IPAR(ID)).EQ.1).AND.LSINGL) THEN
CALL ALTERP(LCUBIC,NID,VREAL,BURN0,.FALSE.,T1D(1,ID))
ELSE IF(MUTYPE(IPAR(ID)).EQ.1) THEN
IF(BURN0.GE.BURN1) CALL XABORT('@NCRTRP: INVALID BURNUP'
1 //' LIMITS(1).')
CALL ALTERI(LCUBIC,NID,VREAL,BURN0,BURN1,T1D(1,ID))
DO 20 I=1,NID
T1D(I,ID)=T1D(I,ID)/(BURN1-BURN0)
20 CONTINUE
ELSE IF((MUTYPE(IPAR(ID)).EQ.2).AND.(.NOT.LSINGL)) THEN
CALL ALTERP(LCUBIC,NID,VREAL,BURN0,.FALSE.,WORK(1))
CALL ALTERP(LCUBIC,NID,VREAL,BURN1,.FALSE.,T1D(1,ID))
DO 30 I=1,NID
T1D(I,ID)=T1D(I,ID)-WORK(I)
30 CONTINUE
ELSE IF((MUTYPE(IPAR(ID)).EQ.2).AND.(LSINGL)) THEN
T1D(:NID,ID)=0.0
ELSE IF(MUTYPE(IPAR(ID)).EQ.3) THEN
* DERIVATIVE WITH RESPECT TO A SINGLE EXIT BURNUP. USE
* EQ.(3.3) OF RICHARD CHAMBON'S THESIS.
IF(BURN0.GE.BURN1) CALL XABORT('@NCRTRP: INVALID BURNUP'
1 //' LIMITS(2).')
IF(PARKEY(IPAR(ID)).NE.'BURN') THEN
CALL XABORT('@NCRTRP: BURN EXPECTED.')
ENDIF
ALLOCATE(TERPA(NID))
CALL ALTERI(LCUBIC,NID,VREAL,BURN0,BURN1,TERPA(1))
DO 40 I=1,NID
T1D(I,ID)=-TERPA(I)
40 CONTINUE
CALL ALTERP(LCUBIC,NID,VREAL,BURN0,.FALSE.,TERPA(1))
DO 50 I=1,NID
T1D(I,ID)=T1D(I,ID)-TERPA(I)*BURN0
50 CONTINUE
CALL ALTERP(LCUBIC,NID,VREAL,BURN1,.FALSE.,TERPA(1))
DENOM=VARVAL*(BURN1-BURN0)
DO 60 I=1,NID
T1D(I,ID)=(T1D(I,ID)+TERPA(I)*BURN1)/DENOM
60 CONTINUE
DEALLOCATE(TERPA)
ELSE
CALL XABORT('NCRTRP: INVALID OPTION.')
ENDIF
NVAL(ID)=NID
70 CONTINUE
* Example: NDIM=3, NVALUE=(3,2,2)
* IDTOT 1 2 3 4 5 6 7 8 9 10 11 12
* ID(1) 1 2 3 1 2 3 1 2 3 1 2 3
* ID(2) 1 1 1 2 2 2 1 1 1 2 2 2
* ID(3) 1 1 1 1 1 1 2 2 2 2 2 2
* (NTOT=12, IDDIV=(6,3,1))
DO 100 IDTOT=1,NTOT ! Ex.: IDTOT = 9
TERTMP=1.0
IDTMP=IDTOT
DO 80 JD=1,NDIM ! Ex.: JD = 1,2,3
ID=(IDTMP-1)/IDDIV(JD)+1 ! Ex.: ID(NDIM...1)= 2,1,3
IDTMP=IDTMP-(ID-1)*IDDIV(JD) ! Ex.: IDTMP = 3,3,1
MUPLET(IPAR(NDIM-JD+1))=ID
TERTMP=TERTMP*T1D(ID,NDIM-JD+1)
80 CONTINUE
ICAL=NCRCAL(1,NVPO(1),NPAR+NLOC,JDEBAR,JARBVA,MUPLET)
IF(ICAL.GT.NCAL) CALL XABORT('NCRTRP: TERP OVERFLOW(2).')
IF(ICAL.EQ.0) GO TO 200
IF(ICAL.EQ.-1) GO TO 210
TERP(ICAL)=TERP(ICAL)+TERTMP
100 CONTINUE
ENDIF
DEALLOCATE(JARBVA,JDEBAR)
110 IF(IMPX.GT.3) THEN
WRITE(IOUT,'(35H NCRTRP: TERP PARAMETERS IN MIXTURE,I4,1H:/(1X,
1 1P,10E12.4))') IBMOLD,(TERP(I),I=1,NCAL)
ENDIF
RETURN
*----
* MISSING ELEMENTARY CALCULATION EXCEPTION.
*----
200 WRITE(IOUT,'(16H NCRTRP: MUPLET=,10I4/(16X,10I4))')
1 (MUPLET(I),I=1,NPAR+NLOC)
CALL XABORT('NCRTRP: MISSING ELEMENTARY CALCULATION.')
210 WRITE(IOUT,'(16H NCRTRP: MUPLET=,10I4/(16X,10I4))')
1 (MUPLET(I),I=1,NPAR+NLOC)
CALL XABORT('NCRTRP: DEGENERATE ELEMENTARY CALCULATION.')
END
|