summaryrefslogtreecommitdiff
path: root/Donjon/src/NAPPPR.f
blob: d1f891c6838b3415f717923f2dc389243e292735 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
*DECK NAPPPR
      SUBROUTINE NAPPPR(IPMAP,IPTRK,IPFLU,IPMTX,IPMAC,NSTATE)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform the Pin Power Reconstruction for core with
* heterogeneous mixture
*
*Copyright:
* Copyright (C) 2014 Ecole Polytechnique de Montreal.
*
*Author(s): 
* R. Chambon (EPM) and R. Nguyen Van Ho (URANUS)
*
*Parameters: input/output
* IPMAP   LCM object address of Map.
* IPTRK   LCM object address of Tracking.
* IPFLU   LCM object address of Flux.
* IPMTX   LCM object address of Matex.
* IPMAC   LCM object address of Macrolib of the fuel.
* NSTATE  length of the state vector
*
*-----------------------------------------------------------------------
*
      USE GANLIB
      IMPLICIT NONE
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER      NSTATE
      TYPE(C_PTR)  IPMAP,IPTRK,IPFLU,IPMTX,IPMAC
*----
*  LOCAL VARIABLES
*----
      INTEGER IOUT,NGPT
      REAL REPS
      PARAMETER (REPS=1.0E-4,IOUT=6,NGPT=2)
      TYPE(C_PTR) JPFLU,JPMAP,KPMAP
      INTEGER INDIC,NITMA,LENGTH,NBPIN
      CHARACTER TEXT*12
      REAL FLOT
      DOUBLE PRECISION DFLOT
      INTEGER ISTATE(NSTATE),IMPX,IMETH
      INTEGER NXP,NYP,NXD,NYD,NZD,NAX,NAY,
     1  NASS,NCOMB,NG,NASS2,NREG,NXM,NYM,NZM,
     2  NXT,NYT,NZT,NXDA,NYDA,NZDA,NCH,NZASS,NPIN,IFX,
     3  NUN,IEL,NMIX,NAMIX,NGFF
      CHARACTER LABEL*8
      CHARACTER TFDINF*12
      INTEGER I,J,K,IP,JP,I1,I2,J1,J2,K1,K2,IASS,ICH,IG,IM,JM,ID,JD,KM,
     1 IAX,JAX,IGP,JGP,KGP,IMIX,IPIN,ICHX,IDIM,LC,L4,MAXKN,MKN,ITYLCM,
     2 ITYPE
      REAL POW,FACT,POWTOT,POWASS,DX,DY,DZ,FPD,FQ,PMAX,
     1  HOTPINPOW,PINPOW,FXY,VTOT
      REAL ZGKSIX(NGPT),ZGKSIY(NGPT),ZGKSIZ(NGPT),WGKSIX(NGPT),
     1  WGKSIY(NGPT),WGKSIZ(NGPT),X(NGPT),Y(NGPT),Z(NGPT),
     2  FLUGP(NGPT,NGPT,NGPT)
      REAL E(25)
      LOGICAL LSPX,LSPY,LSPZ,LCH,LPOW,LNOINT,LDEBUG
*----
*  ALLOCATABLE ARRAYS
*----
      CHARACTER*4, ALLOCATABLE, DIMENSION(:) :: NAMX,NAMY
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NBAX,IBAX,BMIXP,AZONE,
     1  ACOMB,KN
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: CODEA
      INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: KEYFLX,BMIX,MAT
      REAL, ALLOCATABLE, DIMENSION(:) :: MXP,MYP,MXD,MYD,MZD,MXM,
     1  MYM,MZM,MXDA,MYDA,MZDA,FLXD,VOLM,FXYZ,PLINMAXZ,FXYASS,
     2  FACTASS,PWASS,PWASS2
      REAL, ALLOCATABLE, DIMENSION(:,:) :: FXTD,FYTD,BUNDPW
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: HFA,HFM,FDINFM,
     1  FTINFM,AXPOW,VPIN
      REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: FLXDA,VOL
      REAL, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: FLXP,HF,FDINF,FTINF
*
      IMPX=0
      FACT=1.0
      LSPX=.FALSE.
      LSPY=.FALSE.
      LSPZ=.FALSE.
      LPOW=.FALSE.
      LNOINT=.FALSE.
      NZASS=0
      NPIN=0
      NBPIN=0
      IFX=0
      POW=1.0
      FQ=0.0
      FXY=0.0
      HOTPINPOW=0.0
      PINPOW=0.0
      PMAX=0.0
      VTOT=0.0
      LDEBUG=.false.
* Read mandatory keywords
      if(LDEBUG)write(6,*) 'NAPPPR begin debug'
* [EDIT] PPR
      CALL REDGET(INDIC,NITMA,FLOT,TEXT,DFLOT)
      IF(INDIC.NE.3) CALL XABORT('NAPPPR: character data expected.')
      IF(TEXT.EQ.'EDIT') THEN
        CALL REDGET(INDIC,IMPX,FLOT,TEXT,DFLOT)
        IF(INDIC.NE.1) CALL XABORT('NAPPPR: inteGEr data expected.')
        CALL REDGET(INDIC,NITMA,FLOT,TEXT,DFLOT)
        IF(INDIC.NE.3) CALL XABORT('NAPPPR: character data expected.')
      ENDIF
      IF(TEXT.NE.'PPR') CALL XABORT('NAPPPR: ''PPR'' keyword '//
     1  'expected.')
!* NPIN
!      CALL REDGET(INDIC,NITMA,FLOT,TEXT,DFLOT)
!      IF(INDIC.NE.3) CALL XABORT('NAPPPR: character data expected.')
!      IF(TEXT.NE.'NPIN') CALL XABORT('NAPPPR: ''NPIN'' keyword '//
!     1  'expected.')
!      CALL REDGET(INDIC,NPIN,FLOT,TEXT,DFLOT)
!      IF(INDIC.NE.1) CALL XABORT('NAPPPR: NPIN inteGEr expected.')
!      NXP=NPIN
!      NYP=NPIN
* NZASS
      CALL REDGET(INDIC,NITMA,FLOT,TEXT,DFLOT)
      IF(INDIC.NE.3) CALL XABORT('NAPPPR: character data expected.')
      IF(TEXT.NE.'NZASS') CALL XABORT('NAPPPR: ''NZASS'' keyword '//
     1  'expected.')
      CALL REDGET(INDIC,NZASS,FLOT,TEXT,DFLOT)
      IF(INDIC.NE.1) CALL XABORT('NAPPPR: NZASS inteGEr expected.')
C* SPIN + SGAP
C      CALL REDGET(INDIC,NITMA,FLOT,TEXT,DFLOT)
C      IF(INDIC.NE.3) CALL XABORT('NAPPPR: character data expected.')
C      IF(TEXT.NE.'DIM') CALL XABORT('NAPPPR: ''NZASS'' keyword '//
C     1  'expected.')
C      CALL REDGET(INDIC,NITMA,SPIN,TEXT,DFLOT)
C      IF(INDIC.NE.2) CALL XABORT('NAPPPR: SPIN real expected.')
C      CALL REDGET(INDIC,NITMA,SGAP,TEXT,DFLOT)
C      IF(INDIC.NE.2) CALL XABORT('NAPPPR: SGAP real expected.')
C      
* GEt core GEometry description in matex
      IF(IMPX.GE.100)WRITE(6,*) 'debug:GEt matex info'
      CALL LCMGET(IPMTX,'STATE-VECTOR',ISTATE)
      NG=ISTATE(1)
      NXD=ISTATE(8)
      NYD=ISTATE(9)
      NZD=ISTATE(10)
      ALLOCATE(MXD(NXD+1),MYD(NYD+1),MZD(NZD+1))
      CALL LCMGET(IPMTX,'MESHX',MXD)
      CALL LCMGET(IPMTX,'MESHY',MYD)
      CALL LCMGET(IPMTX,'MESHZ',MZD)
* GEt KEYFLX
      IF(IMPX.GE.100)WRITE(6,*) 'debug:GEt track info'
      CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATE)
      NREG=ISTATE(1)
      NUN=ISTATE(2)
      ITYPE=ISTATE(6)
      IEL=ISTATE(9)
      L4=ISTATE(11)
      ICHX=ISTATE(12)
      NXT=ISTATE(14)
      NYT=ISTATE(15)
      NZT=ISTATE(16)
      IDIM=1
      IF((ITYPE.EQ.5).OR.(ITYPE.EQ.6).OR.(ITYPE.EQ.8)) IDIM=2
      IF((ITYPE.EQ.7).OR.(ITYPE.EQ.9)) IDIM=3
      IF((NXD.NE.NXT).OR.(NYD.NE.NYT).OR.(NZD.NE.NZT)) CALL XABORT
     1  ('NAPPPR: dimension do not match between MATEX and TRACKING')
      ALLOCATE(KEYFLX(NXT,NYT,NZT),MAT(NXT,NYT,NZT))
      CALL LCMGET(IPTRK,'KEYFLX',KEYFLX)
      CALL LCMGET(IPTRK,'MATCOD',MAT)
      ALLOCATE(FLXD(NUN))
* GEt assembly GEometry in map
      IF(IMPX.GE.100)WRITE(6,*) 'debug:GEt map info'
      CALL LCMGET(IPMAP,'STATE-VECTOR',ISTATE)
      NCH=ISTATE(2)
      NASS=ISTATE(14)
      NAX=ISTATE(15)
      NAY=ISTATE(16)
      ALLOCATE(AZONE(NCH))
      ALLOCATE(NAMX(NAX),NAMY(NAY))
      CALL LCMGET(IPMAP,'A-ZONE',AZONE)
      CALL LCMGTC(IPMAP,'AXNAME',4,NAX,NAMX)
      CALL LCMGTC(IPMAP,'AYNAME',4,NAY,NAMY)
      CALL LCMSIX(IPMAP,'GEOMAP',1)
      CALL LCMGET(IPMAP,'STATE-VECTOR',ISTATE)
      NXM=ISTATE(3)
      NYM=ISTATE(4)
      NZM=ISTATE(5)
      ALLOCATE(MXM(NXM+1),MYM(NYM+1),MZM(NZM+1))
      ALLOCATE(NBAX(NAY),IBAX(NAY))
      ALLOCATE(BMIX(NXM,NYM,NZM))
      CALL LCMGET(IPMAP,'MESHX',MXM)
      CALL LCMGET(IPMAP,'MESHY',MYM)
      CALL LCMGET(IPMAP,'MESHZ',MZM)
      CALL LCMLEN(IPMAP,'A-NX',LENGTH,INDIC)
      IF(LENGTH.NE.NAY) CALL XABORT('NAPPPR: Number of assembly along'
     1  //'Y direction do not match between MAP and embedded GEometry')
      CALL LCMGET(IPMAP,'A-NX',NBAX)
      CALL LCMGET(IPMAP,'A-IBX',IBAX)
      CALL LCMSIX(IPMAP,'GEOMAP',2)
      CALL LCMGET(IPMAP,'BMIX',BMIX)
C* GEt data in pin by pin assembly GEometry 
C      IF(IMPX.GE.100)WRITE(6,*) 'debug:GEt map pinBypin info'
C      CALL LCMGET(IPMPP,'STATE-VECTOR',ISTATE)
C      NCHP=ISTATE(2)
C      NASSP=ISTATE(14)
C*     total number of fuel bundles = tot. nb. of .XS 
C      NXS=ISTATE(9)
C      IF(NASS.NE.NASSP)CALL XABORT('NAPPPR: number of assembly do not '
C     1  //'match between unfolded GEometries')
C      ALLOCATE(AZONEP(NCHP))
C      CALL LCMGET(IPMPP,'A-ZONE',AZONEP)
C      CALL LCMSIX(IPMPP,'GEOMAP',1)
C      CALL LCMGET(IPMPP,'STATE-VECTOR',ISTATE)
C      NXMP=ISTATE(3)
C      NYMP=ISTATE(4)
C      NZMP=ISTATE(5)
C      CALL LCMSIX(IPMPP,'GEOMAP',2)
C      ALLOCATE(BMIXP(NXMP,NYMP,NZMP))
C      CALL LCMGET(IPMPP,'BMIX',BMIXP)
      IF(IMPX.GE.5) THEN
        WRITE(6,*) 'MATEX dimension   (het):',NXD,NYD,NZD
        WRITE(6,*) 'TRACKING dimension(het):',NXT,NYT,NZT
        WRITE(6,*) 'MAP dimension     (het):',NXM,NYM,NZM
      ENDIF
* Read remaining input file
      NCOMB=0
      ALLOCATE(ACOMB(NASS))
      IF(IMPX.GE.100)WRITE(6,*) 'debug: beg read input'
      IMETH=0
    5 CALL REDGET(INDIC,NITMA,FLOT,TEXT,DFLOT)
        IF(TEXT.EQ.'METH') THEN
        CALL REDGET(INDIC,NITMA,FLOT,TEXT,DFLOT)
        IF(INDIC.NE.3) CALL XABORT('NAPPPR: character data expected.')
        IF(TEXT.EQ.'GPPR') THEN
          IMETH=1
          CALL REDGET(INDIC,IFX,FLOT,TEXT,DFLOT)
          IF(INDIC.NE.1) CALL XABORT('NAPPPR: inteGEr data expected.')
          WRITE(TFDINF,500) IFX
        ELSE
          CALL XABORT('NAPPPR: '//TEXT//' is a wrong method keyword.')
        ENDIF
        GOTO 5
      ELSEIF(TEXT.EQ.'POWER') THEN
        LPOW=.TRUE.
        CALL REDGET(INDIC,NITMA,POW,TEXT,DFLOT)
        IF(INDIC.NE.2) CALL XABORT('NAPPPR: POWER real expected.')
        GOTO 5
      ELSEIF(TEXT.EQ.';') THEN
        GOTO 50
      ELSE
        CALL XABORT('NAPPPR: '//TEXT//' is a wrong keyword.')
      ENDIF
*-----------------------------
   50 CONTINUE
      IF(IMPX.GE.100)WRITE(6,*) 'debug: computation begin'
* Compute mesh X and Y for a pin-by-pin assembly
      CALL LCMGET(IPMAC,'STATE-VECTOR',ISTATE)
      NMIX=ISTATE(2)
      NAMIX=NMIX/NASS/NZASS
      IF(IMPX.GE.1) WRITE(6,*) 'Number of Mix per assembly per plane'//
     1 ' NAMIX = ',NAMIX
      NGFF=ISTATE(16)
      IF(NGFF.EQ.0) CALL XABORT('NAPPPR: NGFF.NE.0 expected.')
      CALL LCMSIX(IPMAC,'GFF',1)
      CALL LCMSIX(IPMAC,'GFF-GEOM',1)
      CALL LCMGET(IPMAC,'STATE-VECTOR',ISTATE)
      NXP=ISTATE(3)
      NYP=ISTATE(4)
      NPIN=NXP
      ALLOCATE(MXP(NXP+1),MYP(NYP+1))
      CALL LCMGET(IPMAC,'MESHX',MXP)
      CALL LCMGET(IPMAC,'MESHY',MYP)
      DO I=2,NXP+1
        MXP(I)=MXP(I)-MXP(1)
      ENDDO
      MXP(1)=0.0
      DO I=2,NYP+1
        MYP(I)=MYP(I)-MYP(1)
      ENDDO
      MYP(1)=0.0
      CALL LCMSIX(IPMAC,'GFF-GEOM',2)
      CALL LCMSIX(IPMAC,'GFF',2)
* Compute IX-,IX+,IY-,IY+,IZ-,IZ+ for each assembly in core GEometry
      IF(IMPX.GE.100) WRITE(6,*) 'debug PPR:IX-,IX+,IY-,IY+,IZ-,IZ+'
      ALLOCATE(CODEA(NASS,6))
      CODEA(:NASS,:6)=0
      ICH=0
      I1=0
      I2=0
      NASS2=0
      DO IASS=1,NASS
        CODEA(IASS,1)=NXD+1
        CODEA(IASS,2)=0
        CODEA(IASS,3)=NYD+1
        CODEA(IASS,4)=0
        CODEA(IASS,5)=NZD+1
        CODEA(IASS,6)=0
      ENDDO
      DO 150 JM=1,NYM
      DO 130 IM=1,NXM
      LCH=.TRUE.
      IASS=0
      DO 100 KM=1,NZM
      IF(BMIX(IM,JM,KM).NE.0) THEN
        IF(LCH) THEN
          ICH=ICH+1
          LCH=.FALSE.
          IASS=AZONE(ICH)
          NASS2=MAX(NASS2,IASS)
          DO I=1,NXD+1
            IF(MXD(I).EQ.MXM(IM)) I1=I
            IF(MXD(I).EQ.MXM(IM+1)) I2=I
          ENDDO
          CODEA(IASS,1)=MIN(I1,CODEA(IASS,1))
          CODEA(IASS,2)=MAX(I2,CODEA(IASS,2))
          DO I=1,NYD+1
            IF(MYD(I).EQ.MYM(JM)) I1=I
            IF(MYD(I).EQ.MYM(JM+1)) I2=I
          ENDDO
          CODEA(IASS,3)=MIN(I1,CODEA(IASS,3))
          CODEA(IASS,4)=MAX(I2,CODEA(IASS,4))
          DO I=1,NZD+1
            IF(MZD(I).EQ.MZM(KM)) I1=I
            IF(MZD(I).EQ.MZM(KM+1)) I2=I
          ENDDO
          CODEA(IASS,5)=MIN(I1,CODEA(IASS,5))
          CODEA(IASS,6)=MAX(I2,CODEA(IASS,6))
        ELSE
          DO I=2,NZD+1
            IF(MZD(I).EQ.MZM(KM+1)) I2=I
          ENDDO
          CODEA(IASS,6)=MAX(I2,CODEA(IASS,6))
        ENDIF
      ENDIF
  100 CONTINUE
  130 CONTINUE
  150 CONTINUE
      IF(IMPX.GE.10) THEN
        WRITE(6,*) 'Position of the assemblies in the core'
        WRITE(6,*) 'IX-,IX+,IY-,IY+,IZ-,IZ+'
        do iass=1,nass
          WRITE(6,*) 'Assembly #',iass,':',(CODEA(iass,i),i=1,6)
        ENDDO
      ENDIF
      IF(NASS2.NE.NASS)CALL XABORT('NAPPPR: number of assembly do not'
     1 //' match: NASS2.NE.NASS')
* For all assembly perform PPR 
      ALLOCATE(FLXP(NXP,NYP,NZASS,NG,NASS))
      ALLOCATE(AXPOW(NXP,NYP,NASS))
      ALLOCATE(VPIN(NXP,NYP,NASS))
      ALLOCATE(FXYASS(NASS))
      ALLOCATE(FACTASS(NASS))
      ALLOCATE(PWASS(NASS),PWASS2(NASS))
      ALLOCATE(BUNDPW(NASS,NZASS))
      IF(.NOT.LPOW) THEN
        CALL LCMGET(IPMAP,'BUND-PW',BUNDPW)
      ENDIF
      DO IASS=1,NASS
        PWASS(IASS)=0.0
        DO IP=1,NXP
          DO JP=1,NYP
            AXPOW(IP,JP,IASS)=0.0
            VPIN(IP,JP,IASS)=0.0
          ENDDO
        ENDDO
        FXYASS(IASS)=0.0
        IF(.NOT.LPOW) THEN
          DO K=1,NZASS
            PWASS(IASS)=PWASS(IASS)+BUNDPW(IASS,K)
          ENDDO
        ENDIF
      ENDDO
      DO IASS=1,NASS
*   GEt flux at core GEometry level for assembly only
      I1=CODEA(IASS,1)
      I2=CODEA(IASS,2)
      J1=CODEA(IASS,3)
      J2=CODEA(IASS,4)
      K1=CODEA(IASS,5)
      K2=CODEA(IASS,6)
      NXDA=I2-I1
      NYDA=J2-J1
      NZDA=K2-K1
      ALLOCATE(FLXDA(NXDA,NYDA,NZDA,NG))
      FLXDA(:NXDA,:NYDA,:NZDA,:NG)=0.0
      IF(NZDA.NE.NZASS) CALL XABORT('NAPPPR: incoherent number of mesh' 
     1 //' in Z direction for an assembly: NZDA.NE.NZASS')
      JPFLU=LCMGID(IPFLU,'FLUX')
      IF((LNOINT).OR.(IMPX.GE.0)) THEN
        
        DO IG=1,NG
          CALL LCMGDL(JPFLU,IG,FLXD)
        DO I=I1,I2-1
        DO J=J1,J2-1
        DO K=K1,K2-1
          FLXDA(I-I1+1,J-J1+1,K-K1+1,IG)=FLXD(KEYFLX(I,J,K))
        ENDDO
C       end K
        ENDDO
C       end J
        ENDDO
C       end I
        ENDDO
C       end IG
      ENDIF
      ALLOCATE(MXDA(NXDA+1),MYDA(NYDA+1),MZDA(NZDA+1))
      DO I=I1,I2
        MXDA(I-I1+1)=MXD(I)-MXD(I1)+MXP(1)
      ENDDO
      IF(ABS(MXDA(NXDA+1)-MXDA(1)-MXP(NXP+1)+MXP(1)).GT.0.0001) THEN
        WRITE(6,*) 'Assembly Transport and Core meshX do not match:'// 
     1   'Transport=',MXP(NXP+1)-MXP(1),'Core=',MXDA(NXDA+1)-MXDA(1)
        CALL XABORT('Sizes do not match')
      ENDIF
      DO J=J1,J2
        MYDA(J-J1+1)=MYD(J)-MYD(J1)+MYP(1)
      ENDDO
      IF(ABS(MYDA(NYDA+1)-MYDA(1)-MYP(NYP+1)+MYP(1)).GT.0.0001) THEN
        WRITE(6,*) 'Assembly Transport and Core meshY do not match:'// 
     1   'Transport=',MYP(NYP+1)-MYP(1),'Core=',MYDA(NYDA+1)-MYDA(1)
        CALL XABORT('Sizes do not match')
      ENDIF
      DO K=K1,K2
        MZDA(K-K1+1)=MZD(K)
      ENDDO
      IF(IMPX.GE.10) THEN
        WRITE(6,*) 'Coarse Flux and mesh at assembly level'
        WRITE(6,*) 'Mesh X:',(MXDA(I),I=1,NXDA+1)
        WRITE(6,*) 'Mesh Y:',(MYDA(I),I=1,NYDA+1)
        WRITE(6,*) 'Mesh Z:',(MZDA(I),I=1,NZDA+1)
        WRITE(6,*) 'Flux:'
        DO IG=1,NG
        WRITE(6,*) 'Group #',IG
        DO K=1,NZDA
        WRITE(6,*) 'Plan #',K
        DO J=1,NYDA
        WRITE(6,*) (FLXDA(I,J,K,IG),I=1,NXDA)
        ENDDO
        ENDDO
        ENDDO
      ENDIF
*   project flux at assembly level
      ALLOCATE(FXTD(NXP,NXDA),FYTD(NYP,NYDA))
      FXTD(:NXP,:NXDA)=0.0
      FYTD(:NYP,:NYDA)=0.0
*   compute fraction of the transport volumes occupied by diffusion volumes  
      CALL NAPFTD(NXP,MXP,NXDA,MXDA,FXTD)
      CALL NAPFTD(NYP,MYP,NYDA,MYDA,FYTD)
!      DO IP=1,NXP
!      DXP=MXP(IP+1)-MXP(IP)
!      DO ID=1,NXDA
!        IF((MXDA(ID).LE.MXP(IP)).AND.(MXDA(ID+1).GE.MXP(IP+1))) THEN
!          FXTD(IP,ID)=1.0
!        ELSEIF ((MXDA(ID).LE.MXP(IP)).AND.(MXDA(ID+1).GT.MXP(IP))) THEN
!          FXTD(IP,ID)=(MXDA(ID+1)-MXP(IP))/DXP
!        ELSEIF ((MXDA(ID).GE.MXP(IP)).AND.
!     1          (MXDA(ID+1).LE.MXP(IP+1))) THEN
!          FXTD(IP,ID)=(MXDA(ID+1)-MXDA(ID))/DXP
!        ELSEIF ((MXDA(ID).LT.MXP(IP+1)).AND.
!     1          (MXDA(ID+1).GE.MXP(IP+1))) THEN
!          FXTD(IP,ID)=(MXP(IP+1)-MXDA(ID))/DXP
!        ENDIF
!      ENDDO
!      ENDDO
*
!      DO IP=1,NYP
!      DYP=MYP(IP+1)-MYP(IP)
!      DO ID=1,NYDA
!        IF((MYDA(ID).LE.MYP(IP)).AND.(MYDA(ID+1).GE.MYP(IP+1))) THEN
!          FYTD(IP,ID)=1.0
!        ELSEIF ((MYDA(ID).LE.MYP(IP)).AND.(MYDA(ID+1).GT.MYP(IP))) THEN
!          FYTD(IP,ID)=(MYDA(ID+1)-MYP(IP))/DYP
!        ELSEIF ((MYDA(ID).GE.MYP(IP)).AND.
!     1          (MYDA(ID+1).LE.MYP(IP+1))) THEN
!          FYTD(IP,ID)=(MYDA(ID+1)-MYDA(ID))/DYP
!        ELSEIF ((MYDA(ID).LT.MYP(IP+1)).AND.
!     1          (MYDA(ID+1).GE.MYP(IP+1))) THEN
!          FYTD(IP,ID)=(MYP(IP+1)-MYDA(ID))/DYP
!        ENDIF
!      ENDDO
!      ENDDO
!     adds up all fluxes
      if(LDEBUG)write(6,*)'NXP,NYP',NXP,NYP
      DO IG=1,NG
      IF(.NOT.LNOINT) CALL LCMGDL(JPFLU,IG,FLXD)
      DO K=1,NZASS
      DO IP=1,NXP
      DO JP=1,NYP
        FLXP(IP,JP,K,IG,IASS)=0.0
        DO ID=1,NXDA
        DO JD=1,NYDA
          IF(LNOINT) THEN
* No interpolation: use averaGE flux
            FLXP(IP,JP,K,IG,IASS)=FLXP(IP,JP,K,IG,IASS)
     1       +FLXDA(ID,JD,K,IG)*FXTD(IP,ID)*FYTD(JP,JD)
* Interpolate flux with polynomial representation
*   (only if pin and macro region have a non-nul intersection)
          ELSEIF(FXTD(IP,ID)*FYTD(JP,JD).NE.0.0) THEN
*     indent removed
*     compute gauss points and weights
      CALL ALGPT(NGPT,MAX(MXP(IP),MXDA(ID)),MIN(MXP(IP+1),MXDA(ID+1)),
     1   ZGKSIX,WGKSIX)
      DX=MIN(MXP(IP+1),MXDA(ID+1))-MAX(MXP(IP),MXDA(ID))
      CALL ALGPT(NGPT,MAX(MYP(JP),MYDA(JD)),MIN(MYP(JP+1),MYDA(JD+1)),
     1   ZGKSIY,WGKSIY)
      DY=MIN(MYP(JP+1),MYDA(JD+1))-MAX(MYP(JP),MYDA(JD))
      CALL ALGPT(NGPT,MZDA(K),MZDA(K+1),ZGKSIZ,WGKSIZ)
      DZ=MZDA(K+1)-MZDA(K)
      IF(IMPX.GE.10) then
        WRITE(6,*) 'IP,JP:',IP,JP,FXTD(IP,ID),'ID,JD:',ID,JD,FYTD(JP,JD)
        WRITE(6,*) 'Gauss point ZGWG:',(ZGKSIX(I),I=1,NGPT),
     1   (WGKSIX(I),I=1,NGPT),'DX',DX
        WRITE(6,*) 'Gauss point ZGWG:',(ZGKSIY(I),I=1,NGPT),
     1   (WGKSIY(I),I=1,NGPT),'DY',DY
        WRITE(6,*) 'Gauss point ZGWG:',(ZGKSIZ(I),I=1,NGPT),
     1   (WGKSIZ(I),I=1,NGPT),'DZ',DZ
      ENDIF
      
*     interpolate flux
      FPD=0.0
      DO IGP=1,NGPT
        X(IGP)=MXD(I1)-MXP(1)+ZGKSIX(IGP)
      ENDDO
      DO JGP=1,NGPT
        Y(JGP)=MYD(J1)-MYP(1)+ZGKSIY(JGP)
      ENDDO
      DO KGP=1,NGPT
        Z(KGP)=ZGKSIZ(KGP)
      ENDDO
      IF(IMPX.GE.10) then
        WRITE(6,*) 'Gauss point X:',(X(I),I=1,NGPT)
        WRITE(6,*) 'Gauss point Y:',(Y(I),I=1,NGPT)
        WRITE(6,*) 'Gauss point Z:',(Z(I),I=1,NGPT)
      ENDIF
      IF(ICHX.EQ.1) THEN
*       Variational collocation method
        CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
        MKN=MAXKN/(NXD*NYD*NZD)
        ALLOCATE(KN(MAXKN))
        CALL LCMGET(IPTRK,'KN',KN)
        CALL LCMSIX(IPTRK,'BIVCOL',1)
        CALL LCMLEN(IPTRK,'T',LC,ITYLCM)
        CALL LCMGET(IPTRK,'E',E)
        CALL LCMSIX(IPTRK,' ',2)
        CALL VALUE2(LC,MKN,NXD,NYD,NZD,L4,X,Y,Z,MXD,MYD,MZD,
     1  FLXD,MAT,KN,NGPT,NGPT,NGPT,E,FLUGP)
        DEALLOCATE(KN)
      ELSE IF(ICHX.EQ.2) THEN
*       Raviart-Thomas finite element method
        CALL VALUE4(IEL,NUN,NXD,NYD,NZD,X,Y,Z,MXD,MYD,MZD,
     1  FLXD,MAT,KEYFLX,NGPT,NGPT,NGPT,FLUGP)
      ELSE IF(ICHX.EQ.3) THEN
*       Nodal collocation method (MCFD)
        CALL VALUE1(IDIM,NXD,NYD,NZD,L4,X,Y,Z,MXD,MYD,MZD,
     1  FLXD,MAT,IEL,NGPT,NGPT,NGPT,FLUGP)
      ELSE
        CALL XABORT('NAPPPR: INTERPOLATION NOT IMPLEMENTED.')
      ENDIF
      IF(IMPX.GE.10) then
        WRITE(6,*) 'Gauss flux values:'
        DO KGP=1,NGPT
          WRITE(6,*) 'KGP=:',KGP
        DO JGP=1,NGPT
          WRITE(6,*) (FLUGP(IGP,JGP,KGP),IGP=1,NGPT)
        ENDDO
        ENDDO
      ENDIF
*     integrate flux (gauss method)
      DO IGP=1,NGPT
      DO JGP=1,NGPT
      DO KGP=1,NGPT
        FPD=FPD+FLUGP(IGP,JGP,KGP)*WGKSIX(IGP)*WGKSIY(JGP)*WGKSIZ(KGP)
      ENDDO
      ENDDO
      ENDDO
*        GEt averaGE flux
      FPD=FPD/DX/DY/DZ
      if(LDEBUG)write(6,*)'FLXP,FPD,FXTD,FYTD',FLXP(IP,JP,K,IG,IASS),
     1                     FPD,FXTD(IP,ID),FYTD(JP,JD)
   
      FLXP(IP,JP,K,IG,IASS)=FLXP(IP,JP,K,IG,IASS)
     1                     +FPD*FXTD(IP,ID)*FYTD(JP,JD)
      if(LDEBUG)write(6,*)'FLXP after',FLXP(IP,JP,K,IG,IASS)
*     indent back
          ENDIF
        ENDDO
        ENDDO
      ENDDO
      ENDDO
      ENDDO
      ENDDO
*
      DEALLOCATE(FXTD,FYTD)
      DEALLOCATE(MXDA,MYDA,MZDA)
      DEALLOCATE(FLXDA)
      IF(IMPX.GE.100)WRITE(6,*) 'debug PPR:projection flux for one '
     1  //'assem end'
!     end of DO IASS=1,NASS
      ENDDO
      IF(IMPX.GE.100)WRITE(6,*) 'debug PPR:projection flux for all '
     1  //'assem end'
* GPPR
      IF(IMETH.EQ.1) THEN
        IF(IMPX.GE.100)WRITE(6,*) 'debug PPR:',TFDINF
*   GEt Volume, phi^t,inf_p and phi^d,inf_m,p from macrolib of fuel
*      Note: if homoGEneous (normal PPR), m=1
        ALLOCATE(VOLM(NGFF),HFM(NMIX,NGFF,NG),
     1   FTINFM(NMIX,NGFF,NG),FDINFM(NMIX,NGFF,NG))
        ALLOCATE(VOL(NPIN,NPIN,NZASS,NASS))
        ALLOCATE(HF(NPIN,NPIN,NZASS,NG,NASS))
        ALLOCATE(FTINF(NPIN,NPIN,NZASS,NG,NASS))
        ALLOCATE(FDINF(NPIN,NPIN,NZASS,NG,NASS))
        ALLOCATE(BMIXP(NPIN*NPIN))
        VOL(:NPIN,:NPIN,:NZASS,:NASS)=0.0
        HF(:NPIN,:NPIN,:NZASS,:NG,:NASS)=0.0
        FTINF(:NPIN,:NPIN,:NZASS,:NG,:NASS)=0.0
        FDINF(:NPIN,:NPIN,:NZASS,:NG,:NASS)=0.0

        if(LDEBUG) call LCMLIB(IPMAC)
        CALL LCMSIX(IPMAC,'GFF',1)
        if(LDEBUG) call LCMLIB(IPMAC)
        CALL LCMGET(IPMAC,'VOLUME',VOLM)
        CALL LCMGET(IPMAC,'H-FACTOR',HFM)
        CALL LCMGET(IPMAC,'NWT0',FTINFM)
        CALL LCMGET(IPMAC,TFDINF,FDINFM)
        CALL LCMSIX(IPMAC,'GFF-GEOM',1)
        CALL LCMGET(IPMAC,'MIX',BMIXP)
        CALL LCMSIX(IPMAC,'GFF-GEOM',2)
        CALL LCMSIX(IPMAC,'GFF',2)

        DO IG=1,NG
        
        DO IASS=1,NASS
          K1=CODEA(IASS,5)
          DO K=1,NZASS
!  NAMIX = 1 for homogeneous assembly 
!        > 1 for heterogeneous assembly
!             Note that all values of HFM are identical 
!             for all the mix in a specific assembly
          IMIX=(IASS-1+(K-1)*NASS)*NAMIX+1
          DO J=1,NPIN
            DO I=1,NPIN
            IPIN=I+(J-1)*NPIN
            HF(I,J,K,IG,IASS)=HFM(IMIX,BMIXP(IPIN),IG)
            FTINF(I,J,K,IG,IASS)=FTINFM(IMIX,BMIXP(IPIN),IG)
            FDINF(I,J,K,IG,IASS)=FDINFM(IMIX,BMIXP(IPIN),IG)
            VOL(I,J,K,IASS)=(MXP(I+1)-MXP(I))*(MYP(J+1)-MYP(J))
     3         *(MZM(K1+K)-MZM(K1+K-1))
            ENDDO
          ENDDO
          ENDDO
!       end of DO IASS=1,NASS
        ENDDO
!       end of DO IG=1,NG
        ENDDO
        IF(IMPX.GE.6) then
        DO iass=1,nass
          WRITE(6,*) 'XS for assembly #',IASS
          DO k=1,nzass
           WRITE(6,*) 'Plane #',K
          DO ig=1,ng
           WRITE(6,*) 'group #',ig
           WRITE(6,*) 'HF #'
          DO j=1,npin
           WRITE(6,*) (HF(I,J,K,ig,iass),I=1,NPIN)
          ENDDO
          WRITE(6,*) 'FTINF #'
          DO j=1,npin
           WRITE(6,*) (FTINF(I,J,K,ig,iass),I=1,NPIN)
          ENDDO
          WRITE(6,*) 'FLXP #'
          DO j=1,npin
           WRITE(6,*) (FLXP(I,J,K,ig,iass),I=1,NPIN)
          ENDDO
          WRITE(6,*) 'FDINF #'
          DO j=1,npin
           WRITE(6,*) (FDINF(I,J,K,ig,iass),I=1,NPIN)
          ENDDO
!           end of do ig=1,ng
          ENDDO
          WRITE(6,*) 'VOL #'
          DO j=1,npin
           WRITE(6,*) (VOL(I,J,K,iass),I=1,NPIN)
          ENDDO
          ENDDO
        ENDDO
        ENDIF
* Print and save reaction rates
        IF(IMPX.GE.100)WRITE(6,*) 'debug: Print and save reaction rates'
        POWTOT=0.0
        DO IASS=1,NASS
          PWASS2(IASS)=0.0
          K1=CODEA(IASS,5)
          DO K=1,NZASS
            DO J=1,NPIN
            DO I=1,NPIN
              VTOT=VTOT+VOL(I,J,K,IASS)
            DO IG=1,NG
              POWTOT=POWTOT+HF(I,J,K,IG,IASS)*FTINF(I,J,K,IG,IASS)
     1         *FLXP(I,J,K,IG,IASS)/FDINF(I,J,K,IG,IASS)
     2         *VOL(I,J,K,IASS)
              PWASS2(IASS)=PWASS2(IASS)
     1         +HF(I,J,K,IG,IASS)*FTINF(I,J,K,IG,IASS)
     1         *FLXP(I,J,K,IG,IASS)/FDINF(I,J,K,IG,IASS)
     2         *VOL(I,J,K,IASS)
            ENDDO
            ENDDO
            ENDDO
          ENDDO
        ENDDO
        IF(IMPX.GE.2) WRITE(6,*) 'POWTOT:',POWTOT
        IF(LPOW) THEN
          DO IASS=1,NASS
            FACTASS(IASS)=POW/POWTOT
          ENDDO
        ELSE
          DO IASS=1,NASS
            FACTASS(IASS)=PWASS(IASS)/PWASS2(IASS)
          ENDDO
        ENDIF
        IF(IMPX.GE.2) WRITE(6,*) 'FACTASS:',(FACTASS(I),I=1,NASS)
        ALLOCATE(HFA(NPIN,NPIN,NZASS))
        ALLOCATE(FXYZ(NZASS))
        ALLOCATE(PLINMAXZ(NZASS))
        DO K=1,NZASS
          FXYZ(K)=0.0
          PLINMAXZ(K)=0.0
        ENDDO
        JPMAP=LCMLID(IPMAP,'ASSEMBLY',NASS)
        IAX=0
        JAX=1
        DO IASS=1,NASS
        K1=CODEA(IASS,5)
        IAX=IAX+1
        IF(IAX.GT.NBAX(JAX)) THEN
          IAX=1
          JAX=JAX+1
        ENDIF
        WRITE(LABEL,'(A4,A4)') NAMY(JAX),NAMX(IBAX(JAX)+IAX-1)
        IF(IMPX.GE.5) THEN
          WRITE(6,*) 'Reaction rates for assembly #',IASS,' Label:',
     1     LABEL
        ENDIF
        DO K=1,NZASS
        IF(IMPX.GE.5) WRITE(6,*) 'Plane #',K
        DO J=1,NPIN
        DO I=1,NPIN
        HFA(I,J,K)=0.0
        DO IG=1,NG
          HFA(I,J,K)=HFA(I,J,K)+HF(I,J,K,IG,IASS)*FTINF(I,J,K,IG,IASS)
     1        *FLXP(I,J,K,IG,IASS)/FDINF(I,J,K,IG,IASS)
     2        *FACTASS(IASS)
     2        *VOL(I,J,K,IASS)
          IF((PLINMAXZ(K)*(MZM(K1+K)-MZM(K1+K-1))).LT.HFA(I,J,K)) THEN
            PLINMAXZ(K)=HFA(I,J,K)/(MZM(K1+K)-MZM(K1+K-1))
          ENDIF
!       end of DO IG=1,NG
        ENDDO
!       end of I=1,NPIN
        ENDDO
          IF(IMPX.GE.5) WRITE(6,*) (HFA(I,J,K),I=1,NPIN)
!       end of J=1,NPIN
        ENDDO
!       end of DO K=1,NZASS
        ENDDO
*
        KPMAP=LCMDIL(JPMAP,IASS)
        CALL LCMPTC(KPMAP,'LABEL',8,LABEL)
        CALL LCMPUT(KPMAP,'PIN-POWER',NPIN*NPIN*NZASS,2,HFA)
        CALL LCMPUT(KPMAP,'FLUX',NPIN*NPIN*NZASS*NG,2,
     1              FLXP(1,1,1,1,IASS))
        POWASS=0.0
        DO I=1,NPIN
        DO J=1,NPIN
        DO K=1,NZASS
          POWASS=POWASS+HFA(I,J,K)!power of the assembly iass
          VPIN(I,J,IASS)=VPIN(I,J,IASS)+VOL(I,J,K,IASS)
          !pin volume
        ENDDO
        ENDDO
        ENDDO
        DO I=1,NPIN
        DO J=1,NPIN
        DO K=1,NZASS
          AXPOW(I,J,IASS)=HFA(I,J,K)
     2    +AXPOW(I,J,IASS)
          !AXPOW:axially integrated pin power per pin
          !normalized to the pin mean power
          IF(PMAX.LT.HFA(I,J,K)) THEN
            PMAX=HFA(I,J,K)!maximal 3D local power
          ENDIF
        ENDDO
        AXPOW(I,J,IASS)=AXPOW(I,J,IASS)/(POWASS/NPIN/NPIN)
        ENDDO
        ENDDO
*
        IF(IMPX.GE.2) WRITE(6,*) 'Power of assembly #',IASS,":",POWASS
        DO I=1,NPIN
          DO J=1,NPIN
            IF(IMPX.GE.2) THEN
              WRITE(6,*) 'AXPOW for assembly #',IASS
              NBPIN=NBPIN+1
              WRITE(6,*) 'ASS:',IASS,'PIN #',NBPIN,":",AXPOW(I,J,IASS)
            ENDIF
            PINPOW=AXPOW(I,J,IASS)*VPIN(I,J,IASS)
            IF(HOTPINPOW.LT.PINPOW) THEN
              HOTPINPOW=PINPOW
        !power of the hot pin normalized to the pin mean power
            ENDIF
            IF(FXYASS(IASS).LT.AXPOW(I,J,IASS)) THEN
              FXYASS(IASS)=AXPOW(I,J,IASS)
            ENDIF
          ENDDO
        ENDDO
        NBPIN=0
*
        IF(IMPX.GE.1) THEN
          WRITE(6,*) 'Fxy for assembly #',IASS,":",FXYASS(IASS)
        ENDIF
        CALL LCMPUT(KPMAP,'ASS-POWER',1,2,POWASS)
!       end of DO IASS=1,NASS
        ENDDO
!     end of IF(IMETH.EQ.1) THEN
      ENDIF
*
      FQ=PMAX
      FXY=HOTPINPOW
*
      IF(IMPX.GE.0) THEN
        WRITE(6,*) 'FQ=',FQ
        WRITE(6,*) 'FXY=',FXY
      DO K=1,NZASS
        FXYZ(K)=PLINMAXZ(K)
        IF(IMPX.GE.0) WRITE(6,*) 'Plane #',K,'---> FXYZ(Z)=',FXYZ(K)
      ENDDO
      ENDIF
      CALL LCMPUT(IPMAP,'FQ',1,2,FQ)
      CALL LCMPUT(IPMAP,'FXY',1,2,FXY)
      CALL LCMPUT(IPMAP,'FXYZ',NZASS,2,FXYZ)
      CALL LCMPUT(IPMAP,'FXYASS',IASS,2,FXYASS)
      CALL LCMGET(IPMAP,'STATE-VECTOR',ISTATE)
      ISTATE(17)=NZASS
      CALL LCMPUT(IPMAP,'STATE-VECTOR',NSTATE,1,ISTATE)
!
      IF(IMPX.GE.100)WRITE(6,*) 'debug: beging deallacate'

      DEALLOCATE(FLXP,FLXD)
      DEALLOCATE(MXP,MYP)

      DEALLOCATE(CODEA)
      IF(IMETH.EQ.1) THEN 
        DEALLOCATE(VOLM,HFM,FTINFM,FDINFM)
        DEALLOCATE(VOL,HF,FTINF,FDINF,AXPOW,FXYASS)
        DEALLOCATE(HFA,FXYZ,PLINMAXZ,VPIN)
        DEALLOCATE(FACTASS,PWASS,PWASS2)
        DEALLOCATE(BUNDPW)
      ENDIF
      DEALLOCATE(ACOMB)
      DEALLOCATE(AZONE)
      DEALLOCATE(NAMX,NAMY)
      DEALLOCATE(BMIX,BMIXP)
      DEALLOCATE(MXM,MYM,MZM)
      DEALLOCATE(NBAX,IBAX)
      DEALLOCATE(KEYFLX,MAT)
      DEALLOCATE(MXD,MYD,MZD)

      RETURN
  500 FORMAT(5HFINF_,I3.3,4H    )
      END