1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
*DECK MCRSX2
SUBROUTINE MCRSX2(IPMPO,HEDIT,RECNAM,NREA,NGRP,NMGF,NL,ISO,
1 NOMREA,NOMISO,DEN,FACT,WEIGHT,SPH,FLUXS,IREAB,IREAF,LPURE,
2 IGYELD,LXS,XS,SIGS,SS2D,TAUXFI,TAUXGF)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Recover the cross sections of an elementary calculation and single
* mixture in an MPO file and perform multiparameter interpolation.
*
*Copyright:
* Copyright (C) 2022 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMPO pointer to the MPO file.
* HEDIT name of output group for a (multigroup mesh, output geometry)
* couple (generally equal to 'output_0').
* RECNAM character identification of calculation.
* NREA number of reactions in the MPO file.
* NGRP number of energy groups.
* NMGF number of macrogroups for the fission yields.
* NL maximum Legendre order (NL=1 is for isotropic scattering).
* ISO isotope index.
* NOMREA names of reactions in the MPO file.
* NOMISO name of isotope ISO.
* DEN number density of isotope.
* FACT number density ratio for the isotope.
* WEIGHT interpolation weight.
* SPH SPH factors.
* FLUXS averaged flux.
* IREAB position of 'Absorption' reaction in NOMREA array.
* IREAF position of 'NuFission' reaction in NOMREA array.
* LPURE =.true. if the interpolation is a pure linear interpolation
* with TERP factors.
* IGYELD yield macrogroup limits.
*
*Parameters: input/output
* LXS existence flag of each reaction.
* XS interpolated cross sections per reaction
* SIGS interpolated scattering cross sections
* SS2D interpolated scattering matrix
* TAUXFI interpolated fission rate
* TAUXGF interpolated fission rate in macrogroups
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE hdf5_wrap
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPMPO
CHARACTER(LEN=12) HEDIT
CHARACTER(LEN=80) RECNAM
INTEGER NREA,NGRP,NMGF,NL,ISO,IREAB,IREAF,IGYELD(NMGF)
REAL DEN,FACT,WEIGHT,SPH(NGRP),FLUXS(NGRP),SS2D(NGRP,NGRP,NL),
1 SIGS(NGRP,NL),XS(NGRP,NREA),TAUXFI,TAUXGF(NMGF)
LOGICAL LXS(NREA),LPURE
CHARACTER NOMREA(NREA)*24,NOMISO*24
*----
* LOCAL VARIABLES
*----
INTEGER IREA,IOF,IL,IGR,JGR,IGRC,IGRDEB,IGRFIN,ADDRZX,ADDRZI,
1 IPROF,ISOM,JOFS,NISO,NL1,NL2,RANK,TYPE,NBYTE,DIMSR(5)
REAL FLOTT,TAUXF,ZIL,B2
CHARACTER RECNAM2*80
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IDATAP,FAG,ADR,ADDRISO
INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: ADDRXS
REAL, ALLOCATABLE, DIMENSION(:) :: RDATAX,DIFF
REAL, ALLOCATABLE, DIMENSION(:,:) :: SIGSB,XSB
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: SS2DB
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(SIGSB(NGRP,NL),SS2DB(NGRP,NGRP,NL),XSB(NGRP,NREA),
1 FAG(NGRP),ADR(NGRP))
*----
* FIND THE ISOTOPE INDEX IN ADDRXS
*----
WRITE(RECNAM2,'(8H/output/,A,6H/info/)') TRIM(HEDIT)
CALL hdf5_read_data(IPMPO,TRIM(RECNAM2)//"NISO",NISO)
CALL hdf5_read_data(IPMPO,TRIM(RECNAM2)//"ADDRXS",ADDRXS)
CALL hdf5_read_data(IPMPO,TRIM(RECNAM2)//"ADDRISO",ADDRISO)
CALL hdf5_read_data(IPMPO,TRIM(RECNAM2)//"TRANSPROFILE",IDATAP)
CALL hdf5_read_data(IPMPO,TRIM(RECNAM)//"ADDRZI",ADDRZI)
CALL hdf5_read_data(IPMPO,TRIM(RECNAM)//"ADDRZX",ADDRZX)
CALL hdf5_read_data(IPMPO,TRIM(RECNAM)//"CROSSECTION",RDATAX)
ISOM=ISO-ADDRISO(ADDRZI+1)
IF((ISOM.LE.0).OR.(ISOM.GT.NISO)) CALL XABORT('MCRSX2: ADDRXS OV'
1 //'ERFLOW.')
NL1=ADDRXS(NREA-1,ISOM,ADDRZX+1)
NL2=ADDRXS(NREA,ISOM,ADDRZX+1)
IF((NL1.GT.NL).OR.(NL2.GT.NL)) CALL XABORT('MCRSX2: NL OVERFLOW.')
*----
* LOOP OVER REACTIONS
*----
SIGSB(:NGRP,:NL)=0.0
SS2DB(:NGRP,:NGRP,:NL)=0.0
XSB(:NGRP,:NREA)=0.0
DO IREA=1,NREA-2
IOF=ADDRXS(IREA,ISOM,ADDRZX+1)
IF(IOF.LT.0) CYCLE
LXS(IREA)=.TRUE.
IF(NOMREA(IREA).EQ.'Diffusion') THEN
DO IL=1,NL1
DO IGR=1,NGRP
FLOTT=RDATAX(IOF+(IL-1)*NGRP+IGR)
SIGSB(IGR,IL)=SIGSB(IGR,IL)+FLOTT
ENDDO
ENDDO
ELSE IF(NOMREA(IREA).EQ.'Scattering') THEN
IPROF=ADDRXS(NREA+1,ISOM,ADDRZX+1)
DO IGR=1,NGRP
FAG(IGR)=IDATAP(IPROF+IGR)+1
ADR(IGR)=IDATAP(IPROF+NGRP+IGR)
ENDDO
ADR(NGRP+1)=IDATAP(IPROF+1+2*NGRP)
JOFS=0
DO IL=1,NL2
ZIL=REAL(2*IL-1)
DO IGR=1,NGRP
DO JGR=FAG(IGR),FAG(IGR)+(ADR(IGR+1)-ADR(IGR))-1
IF(JGR.GT.NGRP) CALL XABORT('MCRSX2: SS2D OVERFLOW.')
FLOTT=RDATAX(IOF+JOFS+1)/ZIL
SS2DB(JGR,IGR,IL)=SS2DB(JGR,IGR,IL)+FLOTT ! JGR <-- IGR
JOFS=JOFS+1
ENDDO
ENDDO
ENDDO
ELSE
XSB(:NGRP,IREA)=RDATAX(IOF+1:IOF+NGRP)
ENDIF
ENDDO ! end of loop over reactions
DEALLOCATE(IDATAP,RDATAX,ADDRISO,ADDRXS)
LXS(NREA-1)=.TRUE.
*----
* RECOVER DIFFUSION COEFFICIENT INFORMATION
*----
IF(NOMISO.EQ.'TotalResidual_mix') THEN
IF(hdf5_group_exists(IPMPO,TRIM(RECNAM)//"leakage")) THEN
CALL hdf5_info(IPMPO,TRIM(RECNAM)//"leakage/DIFFCOEF",RANK,
1 TYPE,NBYTE,DIMSR)
IF(TYPE.NE.99) THEN
LXS(NREA)=.TRUE.
CALL hdf5_read_data(IPMPO,TRIM(RECNAM)//"leakage/DIFFCOEF",
1 DIFF)
XSB(:NGRP,NREA)=DIFF(:NGRP)*DEN
DEALLOCATE(DIFF)
GO TO 10
ENDIF
CALL hdf5_info(IPMPO,TRIM(RECNAM)//"leakage/DB2",RANK,TYPE,
1 NBYTE,DIMSR)
IF(TYPE.NE.99) THEN
LXS(NREA)=.TRUE.
CALL hdf5_read_data(IPMPO,TRIM(RECNAM)//"leakage/BUCKLING",
1 B2)
CALL hdf5_read_data(IPMPO,TRIM(RECNAM)//"leakage/DB2",DIFF)
DO IGR=1,NGRP
XSB(IGR,NREA)=DIFF(IGR)*DEN/B2
ENDDO
DEALLOCATE(DIFF)
ENDIF
ENDIF
ENDIF
*----
* COMPUTE FISSION RATE FOR AN ELEMENTARY CALCULATION
*----
10 TAUXF=0.0
TAUXGF(:NMGF)=0.0
IF(IREAF.GT.0) THEN
DO IGR=1,NGRP
TAUXF=TAUXF+XSB(IGR,IREAF)*FLUXS(IGR)
ENDDO
TAUXFI=TAUXFI+WEIGHT*FACT*TAUXF
IGRFIN=0
DO IGRC=1,NMGF
IGRDEB=IGRFIN+1
IGRFIN=IGYELD(IGRC)
DO IGR=IGRDEB,IGRFIN
TAUXGF(IGRC)=TAUXGF(IGRC)+XSB(IGR,IREAF)*FLUXS(IGR)
ENDDO
TAUXGF(:NMGF)=WEIGHT*FACT*TAUXGF(:NMGF)
ENDDO
ENDIF
*----
* WEIGHT MICROSCOPIC CROSS SECTION DATA IN AN INTERPOLATED MICROLIB
*----
DO IGR=1,NGRP
DO IREA=1,NREA
IF(.NOT.LXS(IREA)) CYCLE
IF(NOMREA(IREA).EQ.'Total') THEN
XS(IGR,IREA)=XS(IGR,IREA)+FACT*SPH(IGR)*WEIGHT*
1 (XSB(IGR,IREAB)+SIGSB(IGR,1))
ELSE IF(LPURE.AND.NOMREA(IREA).EQ.'FissionSpectrum') THEN
XS(IGR,IREA)=XS(IGR,IREA)+WEIGHT*XSB(IGR,IREA)
ELSE IF(NOMREA(IREA).EQ.'FissionSpectrum') THEN
IF(IREAF.EQ.0) CALL XABORT('MCRSX2: IREAF=0.')
XS(IGR,IREA)=XS(IGR,IREA)+WEIGHT*FACT*TAUXF*XSB(IGR,IREA)
ELSE
XS(IGR,IREA)=XS(IGR,IREA)+FACT*SPH(IGR)*WEIGHT*XSB(IGR,IREA)
ENDIF
ENDDO
DO IL=1,NL
IF(MOD(IL,2).EQ.1) THEN
SIGS(IGR,IL)=SIGS(IGR,IL)+FACT*SPH(IGR)*WEIGHT*SIGSB(IGR,IL)
ELSE
DO JGR=1,NGRP
SIGS(IGR,IL)=SIGS(IGR,IL)+FACT*WEIGHT*SS2DB(JGR,IGR,IL)
1 /SPH(JGR)
ENDDO
ENDIF
ENDDO
DO JGR=1,NGRP
DO IL=1,NL
IF(MOD(IL,2).EQ.1) THEN
SS2D(IGR,JGR,IL)=SS2D(IGR,JGR,IL)+FACT*SPH(JGR)*WEIGHT*
1 SS2DB(IGR,JGR,IL)
ELSE
SS2D(IGR,JGR,IL)=SS2D(IGR,JGR,IL)+FACT*WEIGHT*
1 SS2DB(IGR,JGR,IL)/SPH(IGR)
ENDIF
ENDDO
ENDDO
ENDDO
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(ADR,FAG,XSB,SS2DB,SIGSB)
RETURN
END
|