1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
*DECK MCRISO
SUBROUTINE MCRISO(IPLIB,NREA,NGRP,NL,NPRC,NOMREA,NWT0,XS,SIGS,
> SS2D,TAUXFI,LXS,LAMB,CHIRS,BETAR,INVELS,INAME,LSTRD,LPURE,ILUPS,
> ITRANC,IFISS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Store an isotopic data recovered from an MPO file into a Microlib.
*
*Copyright:
* Copyright (C) 2022 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* A. Hebert
*
*Parameters: input
* IPLIB address of the output microlib LCM object
* NREA number of reactions in the MPO file
* NGRP number of energy groups
* NL maximum Legendre order (NL=1 is for isotropic scattering)
* NPRC number of delayed neutron precursor groups
* NOMREA names of reactions in the MPO file
* NWT0 average flux
* XS cross sections per reaction
* SIGS scattering cross sections
* SS2D complete scattering matrix
* TAUXFI interpolated fission rate
* LXS existence flag of each reaction
* LAMB decay constants of the delayed neutron precursor groups
* CHIRS delayed neutron emission spectrums
* BETAR delayed neutron fractions
* INVELS group-average of the inverse neutron velocity
* INAME name of the isotope.
* LSTRD flag set to .true. if B2=0.0.
* LPURE =.true. if the interpolation is a pure linear interpolation
* with TERP factors.
* ILUPS up-scattering removing flag (=1 to remove up-scattering from
* output cross-sections).
*
*Parameters: output
* ITRANC transport correction flag
* IFISS fission flag
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLIB
INTEGER NREA,NGRP,NL,NPRC,INAME(2),ILUPS,ITRANC,IFISS
REAL NWT0(NGRP),XS(NGRP,NREA),SIGS(NGRP,NL),SS2D(NGRP,NGRP,NL),
> TAUXFI,LAMB(NPRC),CHIRS(NGRP,NPRC),BETAR(NPRC),INVELS(NGRP)
LOGICAL LXS(NREA),LSTRD,LPURE
CHARACTER NOMREA(NREA)*24
*----
* LOCAL VARIABLES
*----
INTEGER I0, IGFROM, IGMAX, IGMIN, IGR, JGR, IGTO, ILEG, IPRC,
& IREA, NXSCMP, IL, IRENT0
LOGICAL LDIFF,LHFACT,LZERO
REAL CONVEN,FF,CSCAT
CHARACTER TEXT12*12
CHARACTER HCM(0:10)*2,NAMLEG*2
INTEGER, ALLOCATABLE, DIMENSION(:) :: ITYPRO,NJJ,IJJ
REAL, ALLOCATABLE, DIMENSION(:) :: STRD,WRK,XSSCMP,EFACT
DATA HCM /'00','01','02','03','04','05','06','07','08','09','10'/
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(STRD(NGRP),EFACT(NGRP))
*----
* UP-SCATTERING CORRECTION
*----
IF(ILUPS.EQ.1) THEN
IRENT0=0
DO IREA=1,NREA
IF(NOMREA(IREA).EQ.'Total') IRENT0=IREA
ENDDO
DO JGR=2,NGRP
DO IGR=1,JGR-1 ! IGR < JGR
FF=NWT0(JGR)/NWT0(IGR)
IF(IRENT0.GT.0) THEN
CSCAT=SS2D(IGR,JGR,1)
FF=NWT0(JGR)/NWT0(IGR)
XS(IGR,IRENT0)=XS(IGR,IRENT0)-CSCAT*FF
XS(JGR,IRENT0)=XS(JGR,IRENT0)-CSCAT
ENDIF
DO IL=1,NL
CSCAT=SS2D(IGR,JGR,IL)
SIGS(IGR,IL)=SIGS(IGR,IL)-CSCAT*FF
SIGS(JGR,IL)=SIGS(JGR,IL)-CSCAT
SS2D(JGR,IGR,IL)=SS2D(JGR,IGR,IL)-CSCAT*FF
SS2D(IGR,JGR,IL)=0.0
ENDDO
ENDDO
ENDDO
ENDIF
*----
* BUILD MICROLIB
*----
WRITE(TEXT12,'(2A4)') (INAME(I0),I0=1,2)
CALL LCMPTC(IPLIB,'ALIAS',12,TEXT12)
CALL LCMPUT(IPLIB,'NWT0',NGRP,2,NWT0)
IF(NPRC.GT.0) THEN
CALL LCMPUT(IPLIB,'LAMBDA-D',NPRC,2,LAMB)
CALL LCMPUT(IPLIB,'OVERV',NGRP,2,INVELS)
ENDIF
ITRANC=0
IFISS=0
LDIFF=.FALSE.
LHFACT=.FALSE.
STRD(:NGRP)=0.0
EFACT(:NGRP)=0.0
CONVEN=1.0E6 ! convert MeV to eV
DO IREA=1,NREA
IF(.NOT.LXS(IREA)) CYCLE
LZERO=.TRUE.
DO IGR=1,NGRP
LZERO=LZERO.AND.(XS(IGR,IREA).EQ.0.0)
ENDDO
IF(LZERO) CYCLE
IF(NOMREA(IREA).EQ.'Total') THEN
IF(LSTRD) THEN
DO IGR=1,NGRP
STRD(IGR)=STRD(IGR)+XS(IGR,IREA)
ENDDO
ENDIF
CALL LCMPUT(IPLIB,'NTOT0',NGRP,2,XS(1,IREA))
ELSE IF(NOMREA(IREA).EQ.'Nexess') THEN
* correct scattering XS with excess XS
DO IGR=1,NGRP
SIGS(IGR,1)=SIGS(IGR,1)+XS(IGR,IREA)
ENDDO
CALL LCMPUT(IPLIB,'N2N',NGRP,2,XS(1,IREA))
ELSE IF(NOMREA(IREA).EQ.'Fission') THEN
CALL LCMPUT(IPLIB,'NFTOT',NGRP,2,XS(1,IREA))
ELSE IF(NOMREA(IREA).EQ.'Absorption') THEN
CALL LCMPUT(IPLIB,'NG',NGRP,2,XS(1,IREA))
ELSE IF(NOMREA(IREA).EQ.'FissionSpectrum') THEN
IF(.NOT.LPURE) THEN
DO IGR=1,NGRP
IF(XS(IGR,IREA).NE.0.0) THEN
XS(IGR,IREA)=XS(IGR,IREA)/TAUXFI
ENDIF
ENDDO
ENDIF
CALL LCMPUT(IPLIB,'CHI',NGRP,2,XS(1,IREA))
DO IPRC=1,NPRC
WRITE(TEXT12,'(A3,I2.2)') 'CHI',IPRC
CALL LCMPUT(IPLIB,TEXT12,NGRP,2,CHIRS(1,IPRC))
ENDDO
ELSE IF(NOMREA(IREA).EQ.'NuFission') THEN
IFISS=1
CALL LCMPUT(IPLIB,'NUSIGF',NGRP,2,XS(1,IREA))
IF(NPRC.GT.0) THEN
ALLOCATE(WRK(NGRP))
DO IPRC=1,NPRC
DO IGR=1,NGRP
WRK(IGR)=XS(IGR,IREA)*BETAR(IPRC)
ENDDO
WRITE(TEXT12,'(A6,I2.2)') 'NUSIGF',IPRC
CALL LCMPUT(IPLIB,TEXT12,NGRP,2,WRK)
ENDDO
DEALLOCATE(WRK)
ENDIF
ELSE IF(NOMREA(IREA).EQ.'CaptureEnergyCapture') THEN
LHFACT=.TRUE.
DO IGR=1,NGRP
EFACT(IGR)=EFACT(IGR)+XS(IGR,IREA)*CONVEN
ENDDO
ELSE IF(NOMREA(IREA).EQ.'FissionEnergyFission') THEN
LHFACT=.TRUE.
DO IGR=1,NGRP
EFACT(IGR)=EFACT(IGR)+XS(IGR,IREA)*CONVEN
ENDDO
ELSE IF(NOMREA(IREA).EQ.'Leakage') THEN
LDIFF=LSTRD
IF(.NOT.LSTRD) THEN
DO IGR=1,NGRP
LDIFF=LDIFF.OR.(XS(IGR,IREA).NE.0.0)
STRD(IGR)=XS(IGR,IREA)
ENDDO
ENDIF
ELSE IF(NOMREA(IREA).EQ.'Diffusion') THEN
CYCLE
ELSE IF(NOMREA(IREA).EQ.'Scattering') THEN
CYCLE
ELSE
CALL LCMPUT(IPLIB,NOMREA(IREA),NGRP,2,XS(1,IREA))
ENDIF
ENDDO
IF(LSTRD) THEN
IF((ITRANC.EQ.0).AND.(NL.GT.1)) THEN
* Apollo-type transport correction
DO IGR=1,NGRP
STRD(IGR)=STRD(IGR)-SIGS(IGR,2)
ENDDO
ENDIF
ELSE
DO IGR=1,NGRP
STRD(IGR)=1.0/(3.0*STRD(IGR))
ENDDO
ENDIF
IF((ITRANC.EQ.0).AND.(NL.GT.1)) THEN
* Apollo-type transport correction
ITRANC=2
CALL LCMPUT(IPLIB,'TRANC',NGRP,2,SIGS(1,2))
ENDIF
IF(LDIFF.OR.LSTRD) CALL LCMPUT(IPLIB,'STRD',NGRP,2,STRD)
IF(LHFACT) CALL LCMPUT(IPLIB,'H-FACTOR',NGRP,2,EFACT)
*----
* SAVE SCATTERING VECTORS AND MATRICES (DO NOT USE XDRLGS TO SAVE CPU
* TIME)
*----
ALLOCATE(NJJ(NGRP),IJJ(NGRP),XSSCMP(NGRP*NGRP),ITYPRO(NL))
DO ILEG=1,NL
IF(ILEG.LE.11) THEN
NAMLEG=HCM(ILEG-1)
ELSE
WRITE(NAMLEG,'(I2.2)') ILEG-1
ENDIF
CALL LCMPUT(IPLIB,'SIGS'//NAMLEG,NGRP,2,SIGS(1,ILEG))
NXSCMP=0
DO IGTO=1,NGRP
IGMIN=IGTO
IGMAX=IGTO
DO IGFROM=1,NGRP
IF(SS2D(IGTO,IGFROM,ILEG).NE.0.0) THEN
IGMIN=MIN(IGMIN,IGFROM)
IGMAX=MAX(IGMAX,IGFROM)
ENDIF
ENDDO
IJJ(IGTO)=IGMAX
NJJ(IGTO)=IGMAX-IGMIN+1
DO IGFROM=IGMAX,IGMIN,-1
NXSCMP=NXSCMP+1
XSSCMP(NXSCMP)=SS2D(IGTO,IGFROM,ILEG)
ENDDO
ENDDO
CALL LCMPUT(IPLIB,'NJJS'//NAMLEG,NGRP,1,NJJ)
CALL LCMPUT(IPLIB,'IJJS'//NAMLEG,NGRP,1,IJJ)
CALL LCMPUT(IPLIB,'SCAT'//NAMLEG,NXSCMP,2,XSSCMP)
ITYPRO(ILEG)=1
ENDDO
CALL LCMPUT(IPLIB,'SCAT-SAVED',NL,1,ITYPRO)
DEALLOCATE(ITYPRO,XSSCMP,IJJ,NJJ)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(EFACT,STRD)
RETURN
END
|