1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
*DECK GRAD
SUBROUTINE GRAD(NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute gradients of system characteristics.
*
*Copyright:
* Copyright (C) 2012 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* A. Hebert
*
*Parameters: input
* NENTRY number of data structures transfered to this module.
* HENTRY name of the data structures.
* IENTRY data structure type where:
* IENTRY=1 for LCM memory object;
* IENTRY=2 for XSM file;
* IENTRY=3 for sequential binary file;
* IENTRY=4 for sequential ASCII file.
* JENTRY access permission for the data structure where:
* JENTRY=0 for a data structure in creation mode;
* JENTRY=1 for a data structure in modifications mode;
* JENTRY=2 for a data structure in read-only mode.
* KENTRY data structure pointer.
*
*Comments:
* The calling specifications are:
* OPTIM := GRAD: [ OPTIM ] DFLUX GPT :: (grad\_data) ;
* where
* OPTIM : name of the \emph{optimize} object (L\_OPTIMIZE signature)
* containing the optimization informations. Object OPTIM must appear on the
* RHS to be able to updated the previous values.
* DFLUX : name of the \emph{flux} object (L\_FLUX signature) containing a set
* of solutions of fixed-source eigenvalue problems.
* GPT : name of the \emph{gpt} object (L\_GPT signature) containing a set
* of direct or adjoint sources.
* (grad\_data) : structure containing the data to the module GRAD:.
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NENTRY,IENTRY(NENTRY),JENTRY(NENTRY)
TYPE(C_PTR) KENTRY(NENTRY)
CHARACTER HENTRY(NENTRY)*12
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
TYPE(C_PTR) IPFLX,IPGPT,IPGRAD
CHARACTER HSIGN*12,TEXT4*4,TEXT12*12,TEXT16*16
INTEGER ISTATE(NSTATE)
REAL FLOTT
DOUBLE PRECISION DFLOTT,SR,EPS1,EPS2,EPS3,EPS4
DOUBLE PRECISION OPTPRR(NSTATE)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IREL
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: VARV,CSTV,RHS,
1 DERIV,DERIV0
*----
* PARAMETER VALIDATION.
*----
IF((IENTRY(1).NE.1).AND.(IENTRY(1).NE.2)) CALL XABORT('GRAD: LCM'
1 //' OBJECT EXPECTED AT LHS.')
IF(JENTRY(1).EQ.2) CALL XABORT('GRAD: OPTIMIZE ENTRY IN CREATE O'
1 //'R MODIFICATION MODE EXPECTED.')
DO I=2,NENTRY
TEXT12=HENTRY(I)
IF((JENTRY(I).NE.2).OR.((IENTRY(I).NE.1).AND.(IENTRY(I).NE.2)))
1 CALL XABORT('GRAD: LCM OBJECT IN READ-ONLY MODE EXPECTED AT R'
2 //'HS ('//TEXT12//').')
ENDDO
IPGRAD=KENTRY(1)
IPFLX=C_NULL_PTR
IPGPT=C_NULL_PTR
*----
* RECOVER THE ACTUAL FLUX SOLUTION AND CORRESPONDING TRACKING.
*----
NVAR0=0
NCST0=0
ITYPE=0
IF(NENTRY.EQ.3) THEN
CALL LCMGTC(KENTRY(2),'SIGNATURE',12,HSIGN)
IF(HSIGN.NE.'L_FLUX') THEN
TEXT12=HENTRY(2)
CALL XABORT('GRAD: SIGNATURE OF '//TEXT12//' IS '//HSIGN//
1 '. L_FLUX EXPECTED.')
ENDIF
IPFLX=KENTRY(2)
CALL LCMGET(IPFLX,'STATE-VECTOR',ISTATE)
ITYPE=ISTATE(3)
NGPT=ISTATE(5)
IF(NGPT.EQ.0) CALL XABORT('GRAD: MISSING FIXED-SOURCE EIGENVA'
1 //'LUE SOLUTION')
IPGPT=KENTRY(3)
CALL LCMGTC(IPGPT,'SIGNATURE',12,HSIGN)
IF(HSIGN.NE.'L_SOURCE') THEN
TEXT12=HENTRY(3)
CALL XABORT('GRAD: SIGNATURE OF '//TEXT12//' IS '//HSIGN//
1 '. L_SOURCE EXPECTED.')
ENDIF
CALL LCMGET(IPGPT,'STATE-VECTOR',ISTATE)
ND=ISTATE(3)
NA=ISTATE(4)
*----
* COMPUTE THE NUMBER OF CONSTRAINTS AND OF CONTROL VARIABLES
*----
IF(ITYPE.EQ.100) THEN
NVAR0=NGPT
NCST0=NA-1
ELSE IF(ITYPE.EQ.1000) THEN
NVAR0=ND
NCST0=NGPT-1
ELSE
CALL XABORT('GRAD: INVALID FLUX OBJECT')
ENDIF
ENDIF
*----
* READ INPUT PARAMETERS
*----
IPRINT=1
IOPT=1
ICONV=0
IEXT=0
IEDSTP=2
IHESS=0
ISEARC=0
IMETH=2
ISTEP=0
JCONV=0
SR=1.0D0
EPS1=0.1D0
EPS2=1.0D-4
EPS3=1.0D-4
EPS4=1.0D-4
IF(JENTRY(1).EQ.0) THEN
HSIGN='L_OPTIMIZE'
CALL LCMPTC(IPGRAD,'SIGNATURE',12,HSIGN)
ELSE IF (JENTRY(1).EQ.1) THEN
CALL LCMGTC(IPGRAD,'SIGNATURE',12,HSIGN)
IF(HSIGN.NE.'L_OPTIMIZE') THEN
TEXT12=HENTRY(3)
CALL XABORT('GRAD: SIGNATURE OF '//TEXT12//' IS '//HSIGN//
1 '. L_OPTIMIZE EXPECTED.')
ENDIF
CALL LCMGET(IPGRAD,'STATE-VECTOR',ISTATE)
NVAR=ISTATE(1)
NCST=ISTATE(2)
IOPT=ISTATE(3)
ICONV=ISTATE(4)
IEXT=ISTATE(5)
IEDSTP=ISTATE(6)
IHESS=ISTATE(7)
ISEARC=ISTATE(8)
IMETH=ISTATE(9)
MAXEXT=ISTATE(12)
NSTART=ISTATE(13)
CALL LCMGET(IPGRAD,'OPT-PARAM-R',OPTPRR)
SR=OPTPRR(1)
EPS1=OPTPRR(2)
EPS2=OPTPRR(3)
EPS3=OPTPRR(4)
EPS4=OPTPRR(5)
ENDIF
10 CALL REDGET(INDIC,NITMA,FLOTT,TEXT12,DFLOTT)
IF(INDIC.EQ.10) GO TO 20
IF(INDIC.NE.3) CALL XABORT('GRAD: CHARACTER DATA EXPECTED.')
IF(TEXT12(:4).EQ.'EDIT') THEN
CALL REDGET(INDIC,IPRINT,FLOTT,TEXT12,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('GRAD: INTEGER DATA EXPECTED FOR IP'
1 //'RINT.')
ELSE IF(TEXT12(:8).EQ.'MINIMIZE') THEN
IOPT=1
ELSE IF(TEXT12(:8).EQ.'MAXIMIZE') THEN
IOPT=-1
ELSE IF(TEXT12.EQ.'OUT-STEP-LIM') THEN
CALL REDGET(INDIC,NITMA,FLOTT,TEXT12,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('GRAD: REAL DATA EXPECTED(1)')
SR=FLOTT
ELSE IF((TEXT12(:9).EQ.'VAR-VALUE').OR.
1 (TEXT12(:10).EQ.'VAR-WEIGHT')) THEN
ALLOCATE(VARV(NVAR))
DO IVAR=1,NVAR
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('GRAD: REAL DATA EXPECTED(2)')
VARV(IVAR)=FLOTT
ENDDO
CALL LCMPUT(IPGRAD,TEXT12,NVAR,4,VARV)
DEALLOCATE(VARV)
ELSE IF((TEXT12(:11).EQ.'VAR-VAL-MIN').OR.
1 (TEXT12(:11).EQ.'VAR-VAL-MAX')) THEN
ALLOCATE(VARV(NVAR))
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.EQ.2) THEN
VARV=FLOTT
DO IVAR=2,NVAR
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('GRAD: REAL DATA EXPECTED(3)')
VARV(IVAR)=FLOTT
ENDDO
ELSE IF((INDIC.EQ.3).AND.(TEXT4.EQ.'ALL')) THEN
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('GRAD: REAL DATA EXPECTED(4)')
DO IVAR=1,NVAR
VARV(IVAR)=FLOTT
ENDDO
ELSE
CALL XABORT('GRAD: REAL DATA OR ALL KEYWORD EXPECTED')
ENDIF
CALL LCMPUT(IPGRAD,TEXT12,NVAR,4,VARV)
DEALLOCATE(VARV)
ELSE IF(TEXT12.EQ.'FOBJ-CST-VAL') THEN
ALLOCATE(CSTV(NCST+1))
DO ICST=1,NCST+1
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('GRAD: REAL DATA EXPECTED(5)')
CSTV(ICST)=FLOTT
ENDDO
CALL LCMPUT(IPGRAD,'FOBJ-CST-VAL',NCST+1,4,CSTV)
OBJNEW=CSTV(1)
DEALLOCATE(CSTV)
ELSE IF(TEXT12(:8).EQ.'CST-TYPE') THEN
IF(NCST.EQ.0) CALL XABORT('GRAD: CST-TYPE KEYWORD FORBIDDEN')
ALLOCATE(IREL(NCST))
DO ICST=1,NCST
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) THEN
CALL XABORT('GRAD: INTEGER DATA EXPECTED')
ELSE IF((NITMA.LT.-1).OR.(NITMA.GT.1)) THEN
CALL XABORT('GRAD: -1, 0 or 1 EXPECTED')
ENDIF
IREL(ICST)=NITMA
ENDDO
CALL LCMPUT(IPGRAD,'CST-TYPE',NCST,1,IREL)
DEALLOCATE(IREL)
ELSE IF(TEXT12(:7).EQ.'CST-OBJ') THEN
IF(NCST.EQ.0) CALL XABORT('GRAD: CST-OBJ KEYWORD FORBIDDEN')
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.EQ.2) THEN
ALLOCATE(RHS(NCST))
RHS(1)=FLOTT
DO ICST=2,NCST
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('GRAD: REAL DATA EXPECTED(6)')
RHS(ICST)=FLOTT
ENDDO
CALL LCMPUT(IPGRAD,'CST-OBJ',NCST,4,RHS)
DEALLOCATE(RHS)
ELSE
CALL XABORT('GRAD: REAL DATA OR KEEP KEYWORD EXPECTED')
ENDIF
ELSE IF(TEXT12(:10).EQ.'CST-WEIGHT') THEN
IF(NCST.EQ.0) CALL XABORT('GRAD: CST-WEIGHT KEYWORD FORBIDDEN')
ALLOCATE(RHS(NCST))
DO ICST=1,NCST
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('GRAD: REAL DATA EXPECTED(7)')
RHS(ICST)=FLOTT
ENDDO
CALL LCMPUT(IPGRAD,'CST-WEIGHT',NCST,4,RHS)
DEALLOCATE(RHS)
ELSE IF(TEXT12(:1).EQ.';') THEN
GO TO 20
ELSE
CALL XABORT('GRAD: '//TEXT12//' IS AN INVALID KEYWORD')
ENDIF
GO TO 10
*----
* CALCULATION OF THE NEW GRADIENT
*----
20 IF(IPRINT.GT.0) THEN
IF(ITYPE.EQ.100) THEN
WRITE(6,'(/25H GRAD: EXPLICIT APPROACH.)')
ELSE IF(ITYPE.EQ.1000) THEN
WRITE(6,'(/25H GRAD: IMPLICIT APPROACH.)')
ENDIF
ENDIF
ALLOCATE(DERIV(NVAR*(NCST+1)))
DERIV(:NVAR*(NCST+1))=0.0D0
IF(C_ASSOCIATED(IPFLX).AND.C_ASSOCIATED(IPGPT)) THEN
IF(NVAR0.NE.NVAR) CALL XABORT('GRAD: INCONSISTENT NVAR.')
IF(NCST0.GT.NCST) CALL XABORT('GRAD: INCONSISTENT NCST.')
* ------------------------------------------
CALL GRA001(IPFLX,IPGPT,NVAR0,NCST0,DERIV)
* ------------------------------------------
ENDIF
CALL LCMLEN(IPGRAD,'GRADIENT-DIR',LENGTH,ITYLCM)
IF(LENGTH.EQ.NVAR*(NCST+1)) THEN
ALLOCATE(DERIV0(NVAR*(NCST+1)))
CALL LCMGET(IPGRAD,'GRADIENT-DIR',DERIV0)
DO I=1,NVAR*(NCST+1)
DERIV(I)=DERIV(I)+DERIV0(I)
ENDDO
DEALLOCATE(DERIV0)
ENDIF
CALL LCMPUT(IPGRAD,'GRADIENT',NVAR*(NCST+1),4,DERIV)
DEALLOCATE(DERIV)
*----
* PRINT INFORMATION
*----
IF(IPRINT.GT.0) THEN
WRITE(6,'(/31H GRAD: INFORMATION AT ITERATION,I5)') IEXT+1
CALL LCMLEN(IPGRAD,'VAR-VALUE',ILONG,ITYLCM)
IF(ILONG.GT.0) THEN
ALLOCATE(VARV(NVAR))
CALL LCMGET(IPGRAD,'VAR-VALUE',VARV)
WRITE(6,100) 'CONTROL VARIABLES:',(VARV(IVAR),IVAR=1,NVAR)
DEALLOCATE(VARV)
ENDIF
IF(IPRINT.GT.1) THEN
ALLOCATE(DERIV(NVAR*(NCST+1)))
CALL LCMGET(IPGRAD,'GRADIENT',DERIV)
WRITE(6,'(/29H GRADIENTS-------------------)')
WRITE(6,100) 'OBJECTIVE FUNCTION:',(DERIV(IVAR),IVAR=1,NVAR)
IF(IPRINT.GT.2) THEN
DO 60 ICST=1,NCST
WRITE(TEXT16,'(10HCONSTRAINT,I4,1H:)') ICST
WRITE(6,100) TEXT16,(DERIV(ICST*NVAR+IVAR),IVAR=1,NVAR)
60 CONTINUE
ENDIF
DEALLOCATE(DERIV)
ENDIF
ENDIF
*----
* SAVE THE STATE VECTORS
*----
ISTATE(1)=NVAR
ISTATE(2)=NCST
ISTATE(3)=IOPT
ISTATE(4)=ICONV
ISTATE(5)=IEXT
ISTATE(6)=IEDSTP
ISTATE(7)=IHESS
ISTATE(8)=ISEARC
ISTATE(9)=IMETH
ISTATE(10)=ISTEP
ISTATE(11)=JCONV
ISTATE(14)=0
IF(IPRINT.GT.0) WRITE(6,110) (ISTATE(I),I=1,9)
CALL LCMPUT(IPGRAD,'STATE-VECTOR',NSTATE,1,ISTATE)
OPTPRR(:NSTATE)=0.0D0
OPTPRR(1)=SR
OPTPRR(2)=EPS1
OPTPRR(3)=EPS2
OPTPRR(4)=EPS3
OPTPRR(5)=EPS4
IF(IPRINT.GT.0) WRITE(6,120) (OPTPRR(I),I=1,5)
CALL LCMPUT(IPGRAD,'OPT-PARAM-R',NSTATE,4,OPTPRR)
IF(IPRINT.GT.2) CALL LCMLIB(IPGRAD)
RETURN
*
100 FORMAT(1X,A28,1P,8E12.4/(29X,8E12.4))
110 FORMAT(/8H OPTIONS/8H -------/
1 7H NVAR ,I8,32H (NUMBER OF CONTROL VARIABLES)/
2 7H NCST ,I8,26H (NUMBER OF CONSTRAINTS)/
3 7H IOPT ,I8,37H (=1/-1: MINIMIZATION/MAXIMIZATION)/
4 7H ICONV ,I8,43H (=0/1: EXTERNAL NOT CONVERGED/CONVERGED)/
5 7H IEXT ,I8,32H (INDEX OF EXTERNAL ITERATION)/
6 7H IEDSTP,I8,43H (=1/2: HALF REDUCTION/PARABOLIC FORMULA)/
7 7H IHESS ,I8,29H (=0/1/2: STEEPEST/CG/BFGS)/
8 7H ISEARC,I8,35H (=0/1/2: NO SEARCH/OPTEX/NEWTON)/
9 7H IMETH ,I8,42H (=1/2/3: SIMPLEX-LEMKE/LEMKE-LEMKE/MAP))
120 FORMAT(/
1 12H REAL PARAM:,1P/12H -----------/
2 7H SR ,D12.4,39H (RADIUS OF THE QUADRATIC CONSTRAINT)/
3 7H EPS1 ,D12.4,13H (NOT USED)/
4 7H EPS2 ,D12.4,31H (EXTERNAL CONVERGENCE LIMIT)/
5 7H EPS3 ,D12.4,31H (INTERNAL CONVERGENCE LIMIT)/
6 7H EPS4 ,D12.4,43H (QUADRATIC CONSTRAINT CONVERGENCE LIMIT))
END
|