summaryrefslogtreecommitdiff
path: root/Donjon/src/FLPOWB.f
blob: 2bafb80e3199d111055de6ca10f96a68662d4310 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
*DECK FLPOWB
      SUBROUTINE FLPOWB(IPPOW,IPMAP,IPMTX,NMIX,NMAT,NGRP,NCH,NB,NEL,MAT,
     1 VOL,HFAC,FLUX,POWB,POWC,IMPX,PTOT,FSTH,LFSTH,FMIX,FLUB,IGEO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the channel and bundle powers over the fuel lattice.
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal.
*
*Author(s): 
* D. Sekki, M. Guyot, V. Descotes
*
*Parameters: input
* IPPOW  pointer to power information.
* IPMAP  pointer to fuel-map information.
* IPMTX  pointer to matex information.
* NMIX   maximum number of material mixtures.
* NMAT   total number of mixtures (includes virtual regions).
* NGRP   number of energy groups.
* NCH    number of reactor channels.
* NB     number of fuel bundles per channel.
* NEL    total number of finite elements.
* MAT    index-number of mixture assigned to each volume.
* VOL    element-ordered mesh-splitted volumes.
* HFAC   h-factors over the reactor core.
* FLUX   normalized average fluxes associated with each volume.
* IMPX   printing index (=0 for no print).
* PTOT   total power in MW
* FSTH   thermal to fission ratio power
* LFSTH  boolean =.true. if FSTH is specified
* FMIX   fuel bundle indices.
* FLUB   normalized average fluxes associated with each bundle
* IGEO   type of the geometry (=7 or =9)
*
*Parameters: output
* POWB   bundle powers in kW.
* POWC   channel powers in kW.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPPOW,IPMAP,IPMTX
      INTEGER NMIX,NMAT,NCH,NB,NGRP,NEL,MAT(NEL),IMPX,NX,NY,NZ,IGEO,
     1        FMIX(NCH*NB)
      REAL HFAC(NMIX,NGRP),VOL(NEL),FLUX(NEL,NGRP),BFACT1,CFACT1,
     1     POWB(NCH,NB),POWC(NCH),FSTH,FLUB(NCH,NB,NGRP)
      LOGICAL LFSTH
*----
*  LOCAL VARIABLES
*----
      PARAMETER(NSTATE=40,IOUT=6)
      INTEGER IGST(NSTATE),FMAT(NMAT),IB,ICH,IEL,ICMX,IBMX,IPCH
      DOUBLE PRECISION POWER,BAVG,CAVG,BFACT,XDRCST,EVJ
      REAL PBMX,VTOT,VOLB(NCH,NB)
      CHARACTER TEXT*12
      TYPE(C_PTR) JPMAP
*----
*  BUNDLE POWERS
*----
      PBMX=0.
      BAVG=0.0D0
      POWER=0.0D0
      IBMX=0
      ICMX=0
      FMAT(:NMAT)=0
      CALL LCMGET(IPMTX,'MAT',FMAT)
      POWB(:NCH,:NB)=0.0
      IF(IMPX.GT.0)WRITE(IOUT,1004)
*
      EVJ=XDRCST('eV','J')
      NTOT=0
      DO 35 IB=1,NB
      DO 30 ICH=1,NCH
      POWB(ICH,IB)=0.0
      VOLB(ICH,IB)=0.0
      NUM=(IB-1)*NCH+ICH
      IF(FMIX(NUM).EQ.0) GO TO 30
      NTOT=NTOT+1
      DO 20 IEL=1,NEL
      IF((FMAT(IEL).EQ.-NTOT).AND.(MAT(IEL).GT.0)) THEN
         DO 10 JGR=1,NGRP
         POWB(ICH,IB)=POWB(ICH,IB)+
     1     FLUX(IEL,JGR)*HFAC(MAT(IEL),JGR)*VOL(IEL)*REAL(EVJ)
   10    CONTINUE
         VOLB(ICH,IB)=VOLB(ICH,IB)+VOL(IEL)
      ENDIF
   20 CONTINUE
      POWER=POWER+DBLE(POWB(ICH,IB))
   30 CONTINUE
   35 CONTINUE
      POWER=POWER/(10**6)
      VTOT=0.0
      DO 45 IB=1,NB
      DO 40 ICH=1,NCH
      POWB(ICH,IB)=POWB(ICH,IB)/1000.
      IF(POWB(ICH,IB).GT.PBMX)THEN
        PBMX=POWB(ICH,IB)
        ICMX=ICH
        IBMX=IB
      ENDIF
      BAVG=BAVG+DBLE(POWB(ICH,IB)*VOLB(ICH,IB))
      VTOT=VTOT+VOLB(ICH,IB)
   40 CONTINUE
   45 CONTINUE
      BAVG=BAVG/VTOT
      BFACT=BAVG/PBMX

*     CHECK TOTAL POWER
      IF(IMPX.EQ.99)WRITE(IOUT,1000)POWER
      IF((IMPX.EQ.0).OR.(IMPX.GT.1))GOTO 50
      WRITE(TEXT,'(A9,I3.3)')'CHANNEL #',ICMX
      IF(PBMX.LT.1000.)THEN
        WRITE(IOUT,1001)PBMX,TEXT,IBMX
      ELSE
        WRITE(IOUT,1011)PBMX,TEXT,IBMX
      ENDIF
      IF(BAVG.LT.1000.)THEN
        WRITE(IOUT,1007)BAVG
      ELSE
        WRITE(IOUT,1012)BAVG
      ENDIF
      FACT=1./REAL(BFACT)
      WRITE(IOUT,1009)BFACT,FACT
*----
*  CHANNEL POWERS
*----
   50 PCMX=0.
      CAVG=0.0D0
      POWER=0.0D0
      POWC(:NCH)=0.0
      DO 70 ICH=1,NCH
      VOLCH=0.0
      DO 60 IB=1,NB
      POWC(ICH)=POWC(ICH)+POWB(ICH,IB)
      VOLCH=VOLCH+VOLB(ICH,IB)
   60 CONTINUE
      POWER=POWER+DBLE(POWC(ICH))
      IF(POWC(ICH).GT.PCMX)THEN
        PCMX=POWC(ICH)
        IPCH=ICH
      ENDIF
      CAVG=CAVG+DBLE(POWC(ICH)*VOLCH)
   70 CONTINUE
      POWER=POWER/(10**3)
      CAVG=CAVG/VTOT
      CFACT=REAL(CAVG)/PCMX
*----
*  THERMAL TO FISSION RATIO POWER
*----
      IF(LFSTH) THEN
        CALL FLFSTH(PTOT,POWER,POWC,POWB,FLUX,NGRP,NCH,
     +              NB,NEL,FSTH,FLUB)
      ENDIF

      IF(IMPX.EQ.0)GOTO 90
*     CHECK TOTAL POWER
      IF(IMPX.EQ.99)WRITE(IOUT,1002)POWER
      IF(IMPX.GT.1)GOTO 80
      WRITE(TEXT,'(A9,I3.3)')'CHANNEL #',IPCH
      IF(PCMX.LT.10000.)THEN
        WRITE(IOUT,1003)PCMX,TEXT
      ELSE
        WRITE(IOUT,1013)PCMX,TEXT
      ENDIF
      IF(CAVG.LT.10000.)THEN
        WRITE(IOUT,1008)CAVG
      ELSE
        WRITE(IOUT,1014)CAVG
      ENDIF
      FACT=1./CFACT
      WRITE(IOUT,1010)CFACT,FACT
      GOTO 90
*----
*  PRINTING
*----
   80 JPMAP=LCMGID(IPMAP,'GEOMAP')
      CALL LCMGET(JPMAP,'STATE-VECTOR',IGST)
      NX=IGST(3)
      NY=IGST(4)
      NZ=IGST(5)
      IF(IGEO.NE.IGST(1)) CALL XABORT('@FLPOWB: WRONG GEOMETRY '
     1 // 'EMBEDDED IN THE FUEL MAP')
      IF(IGEO.EQ.7) THEN
        CALL FLPRNT(IPMAP,NCH,NB,NX,NY,NZ,POWB,PBMX,ICMX,
     1   IBMX,POWC,PCMX,IPCH,BAVG,BFACT,CAVG,CFACT,IMPX)
      ELSEIF(IGEO.EQ.9) THEN
        CALL FLPHPR(IPMAP,NCH,NB,NX,NZ,POWB,PBMX,ICMX,
     1   IBMX,POWC,PCMX,BAVG,BFACT,CAVG,CFACT,IMPX)
      ENDIF
   90 BFACT1=1./REAL(BFACT)
      CALL LCMPUT(IPPOW,'PMAX-BUND',1,2,PBMX)
      CALL LCMPUT(IPPOW,'FORM-BUND',1,2,BFACT1)
      CFACT1=1./CFACT
      CALL LCMPUT(IPPOW,'PMAX-CHAN',1,2,PCMX)
      CALL LCMPUT(IPPOW,'FORM-CHAN',1,2,CFACT1)
      RETURN
*
 1000 FORMAT(1X,'COMPUTED TOTAL POWER OVER ',
     1  'ALL BUNDLES =>',1P,E13.6,1X,'MW')
 1001 FORMAT(1X,'MAXIMUM BUNDLE POWER =',1X,F9.1,
     1  1X,'kW',2X,'=>',2X,A12,2X,'BUNDLE #',I2.2)
 1002 FORMAT(1X,'COMPUTED TOTAL POWER OVER',
     1  'ALL CHANNELS =>',1P,E13.6,1X,'MW')
 1003 FORMAT(1X,'MAXIMUM CHANNEL POWER =',1X,F9.1,
     1  1X,'kW',2X,'=>',2X,A12)
 1004 FORMAT(/1X,'** COMPUTING CHANNEL AND',
     1 1X,'BUNDLE POWERS **'/)
 1007 FORMAT(1X,'AVERAGE POWER OVER ALL BUNDLES',
     1 1X,'=',1X,F9.1,1X,'kW')
 1008 FORMAT(1X,'AVERAGE POWER OVER ALL CHANNELS',
     1 1X,'=',1X,F9.1,1X,'kW')
 1009 FORMAT(1X,'BUNDLE-POWER FORM FACTOR',2X,'=>',2X,
     1 'AVG/MAX =',1X,F8.4,3X,'(MAX/AVG = ',F8.4,')'/)
 1010 FORMAT(1X,'CHANNEL-POWER FORM FACTOR',2X,'=>',2X,
     1 'AVG/MAX =',1X,F8.4,3X,'(MAX/AVG = ',F8.4,')'/)
 1011 FORMAT(1X,'MAXIMUM BUNDLE POWER =',1X,F9.1,
     1  1X,'kW',2X,'=>',2X,A12,2X,'BUNDLE #',I2.2)
 1012 FORMAT(1X,'AVERAGE POWER OVER ALL BUNDLES',
     1 1X,'=',1X,F9.1,1X,'kW')
 1013 FORMAT(1X,'MAXIMUM CHANNEL POWER =',1X,F9.1,
     1  1X,'kW',2X,'=>',2X,A12)
 1014 FORMAT(1X,'AVERAGE POWER OVER ALL CHANNELS',
     1 1X,'=',1X,F9.1,1X,'kW')
      END