1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
|
*DECK DRENOU
SUBROUTINE DRENOU(IPRINT,IPGPT,IPMAC1,IPMAC2,IPFLX,IPTRK,IPGRAD,
1 NG,NREG,ITYPE,IELEM,NMIL,NALBP,NUN,NFIS1,NFIS2,ILEAK1,ILEAK2,
2 IDF2,MATCOD,KEYFLX,VOL,LNO,NFUNC,RMSD)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the GPT sources corresponding to the gradient of the RMS
* absorption distribution. Case with NFUNC individual components to be
* used with a Newtonian method.
*
*Copyright:
* Copyright (C) 2019 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* A. Hebert
*
*Parameters: input
* IPRINT print parameter
* IPGPT pointer to the L_GPT data structure.
* IPMAC1 pointer to the actual macrolib structure.
* IPMAC2 pointer to the reference macrolib structure.
* IPFLX pointer to the multigroup flux.
* IPTRK pointer to the tracking object.
* IPGRAD pointer to the L_OPTIMIZE object.
* NG number of energy groups.
* NREG number of regions.
* NMIL number of material mixtures.
* NALBP number of physical albedos.
* NUN number of unknowns per energy group.
* NFIS1 number of fissile isotopes in actual macrolib.
* NFIS2 number of fissile isotopes in reference macrolib.
* ILEAK1 type of leakage calculation in actual macrolib
* =0: no leakage; =1: homogeneous leakage (Diffon).
* ILEAK2 type of leakage calculation in reference macrolib.
* IDF2 ADF type, 0 = none, 1 = Albedo, 2 = FD_B/FD_C/..., 3 = ADF.
* MATCOD material mixture indices per region.
* KEYFLX position of averaged fluxes in unknown vector.
* VOL volumes.
* LNO flag set to .true. to exit after calculation of RMS.
*
*Parameters: output
* NFUNC number of individual components in the gradient terms.
* RMSD RMS error on rate distribution.
*
*Parameters:
* ITYPE
* IELEM
*
* Reference:
* A. Hebert,"Developpement de la methode SPH: Homogeneisation de
* cellules dans un reseau non uniforme et calcul des parametres de
* reflecteur," Note CEA-N-2209, Sect. 3.5.1, 1981.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPGPT,IPMAC1,IPMAC2,IPFLX,IPTRK,IPGRAD
INTEGER IPRINT,NG,NREG,ITYPE,IELEM,NMIL,NALBP,NUN,NFIS1,NFIS2,
> ILEAK1,ILEAK2,IDF2,MATCOD(NREG),KEYFLX(NREG),NFUNC
REAL VOL(NREG)
DOUBLE PRECISION RMSD
LOGICAL LNO
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
TYPE(C_PTR) JPMAC1,JPMAC2,KPMAC1,KPMAC2,JPFLX,JPGPT,KPGPT
INTEGER ISTATE(NSTATE)
DOUBLE PRECISION SOUT1,SOUT2,SOUTOT,AB1TOT,AB2TOT,FI1TOT,FI2TOT,
> SUM1,DSUM,DELTA,OUT,SA,SF,ABS2M,OUT2M,AIL,BIL,DEN1,DEN2
CHARACTER HSMG*131
DOUBLE PRECISION, PARAMETER :: EPS=1.0E-4,EPSL=1.0E-4
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS,IREL,KN,IQFR
REAL, ALLOCATABLE, DIMENSION(:) :: GAR,WORK,SUNK,FLUX,QFR,OUTG1,
> OUTG2,DIFHOM,DIFF
REAL, ALLOCATABLE, DIMENSION(:,:) :: PHI1,PHI2,ABS1,ABS2,NUF1,
> NUF2,GAMMA,OUTG2R
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: CHI1,CHI2,RHS1,LHS1,RHS2,
> LHS2
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: VARV,RHS,CONST,FF
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: SIGA,SIGF,DFF
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(PHI1(NMIL,NG),PHI2(NMIL,NG),ABS1(NMIL,NG),ABS2(NMIL,NG),
1 RHS1(NMIL,NG,NG),LHS1(NMIL,NG,NG),RHS2(NMIL,NG,NG),
2 LHS2(NMIL,NG,NG),CONST(NG),IREL(NG),RHS(NG),GAMMA(NUN,NG),
3 OUTG1(NG),OUTG2(NG),OUTG2R(NG,2),SIGA(NMIL,NG),SIGF(NMIL,NG))
*----
* COMPUTE THE ACTUAL AND REFERENCE REACTION RATE MATRICES
*----
CALL LCMGET(IPMAC1,'K-EFFECTIVE',ZKEFF1)
CALL LCMGET(IPMAC2,'K-EFFECTIVE',ZKEFF2)
IF(IDF2.EQ.1) THEN
CALL LCMSIX(IPMAC2,'ADF',1)
CALL LCMLEN(IPMAC2,'ALBS00',ILCMLN,ITYLCM)
IF(ILCMLN.NE.2*NG) CALL XABORT('DRENOU: WRONG ALBS00 LENGTH.')
CALL LCMGET(IPMAC2,'ALBS00',OUTG2R)
CALL LCMSIX(IPMAC2,' ',2)
ENDIF
CALL LCMLEN(IPMAC1,'B2 B1HOM',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.1) THEN
CALL LCMGET(IPMAC1,'B2 B1HOM',B21)
ELSE
B21=0.0
ENDIF
CALL LCMLEN(IPMAC2,'B2 B1HOM',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.1) THEN
CALL LCMGET(IPMAC2,'B2 B1HOM',B22)
ELSE
B22=0.0
ENDIF
IF((ILEAK1.EQ.1).AND.(IPRINT.GT.0)) THEN
WRITE(6,'(/22H DRENOU: MACRO B2=,1P,E12.4)') B21
ENDIF
IF((ILEAK2.EQ.1).AND.(IPRINT.GT.0)) THEN
WRITE(6,'(/22H DRENOU: REFERENCE B2=,1P,E12.4)') B22
ENDIF
RHS1(:NMIL,:NG,:NG)=0.0
LHS1(:NMIL,:NG,:NG)=0.0
RHS2(:NMIL,:NG,:NG)=0.0
LHS2(:NMIL,:NG,:NG)=0.0
SIGA(:NMIL,:NG)=0.0D0
SIGF(:NMIL,:NG)=0.0D0
JPMAC1=LCMGID(IPMAC1,'GROUP')
JPMAC2=LCMGID(IPMAC2,'GROUP')
ALLOCATE(IJJ(NMIL),NJJ(NMIL),IPOS(NMIL),GAR(NMIL),WORK(NMIL*NG),
1 CHI1(NMIL,NFIS1,NG),NUF1(NMIL,NFIS1),CHI2(NMIL,NFIS2,NG),
2 NUF2(NMIL,NFIS2),DIFHOM(NG),DIFF(NMIL))
DO IG=1,NG
KPMAC1=LCMGIL(JPMAC1,IG)
CALL LCMGET(KPMAC1,'CHI',CHI1(1,1,IG))
KPMAC2=LCMGIL(JPMAC2,IG)
CALL LCMGET(KPMAC2,'CHI',CHI2(1,1,IG))
CALL LCMLEN(KPMAC1,'FLUX-INTG',ILG,ITYLCM)
IF(ILG.NE.NMIL) CALL XABORT('DRENOU: MISSING ACTUAL FLUX.')
CALL LCMLEN(KPMAC2,'FLUX-INTG',ILG,ITYLCM)
IF(ILG.NE.NMIL) CALL XABORT('DRENOU: MISSING REFERENCE FLUX.')
CALL LCMGET(KPMAC1,'FLUX-INTG',PHI1(1,IG))
CALL LCMGET(KPMAC2,'FLUX-INTG',PHI2(1,IG))
ENDDO
DO IG=1,NG
KPMAC1=LCMGIL(JPMAC1,IG)
KPMAC2=LCMGIL(JPMAC2,IG)
IF(ILEAK1.EQ.1) THEN
CALL LCMLEN(KPMAC1,'DIFF',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMAC1,'DIFF',DIFF)
ELSE
CALL LCMGET(IPMAC1,'DIFHOMB1HOM',DIFHOM)
DO IBM=1,NMIL
DIFF(IBM)=DIFHOM(IG)
ENDDO
ENDIF
ELSE
DIFF(:NMIL)=0.0
ENDIF
CALL LCMGET(KPMAC1,'NTOT0',GAR)
CALL LCMGET(KPMAC1,'SCAT00',WORK)
CALL LCMGET(KPMAC1,'NJJS00',NJJ)
CALL LCMGET(KPMAC1,'IJJS00',IJJ)
CALL LCMGET(KPMAC1,'IPOS00',IPOS)
DO IBM=1,NMIL
SIGA(IBM,IG)=SIGA(IBM,IG)+GAR(IBM)
IPOSDE=IPOS(IBM)
DO JG=IJJ(IBM),IJJ(IBM)-NJJ(IBM)+1,-1
* IG <-- JG
RHS1(IBM,IG,JG)=RHS1(IBM,IG,JG)-WORK(IPOSDE)*PHI1(IBM,JG)
SIGA(IBM,JG)=SIGA(IBM,JG)-WORK(IPOSDE)
IPOSDE=IPOSDE+1
ENDDO
RHS1(IBM,IG,IG)=RHS1(IBM,IG,IG)+(GAR(IBM)+B21*DIFF(IBM))*
> PHI1(IBM,IG)
ENDDO
CALL LCMGET(KPMAC1,'NUSIGF',NUF1)
DO IBM=1,NMIL
DO IFIS=1,NFIS1
DO JG=1,NG
LHS1(IBM,JG,IG)=LHS1(IBM,JG,IG)+CHI1(IBM,IFIS,JG)*
> NUF1(IBM,IFIS)*PHI1(IBM,IG)
SIGF(IBM,IG)=SIGF(IBM,IG)+CHI1(IBM,IFIS,JG)*NUF1(IBM,IFIS)
ENDDO
ENDDO
ENDDO
*
IF(ILEAK2.EQ.1) THEN
CALL LCMLEN(KPMAC2,'DIFF',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMAC2,'DIFF',DIFF)
ELSE
CALL LCMGET(IPMAC2,'DIFHOMB1HOM',DIFHOM)
DO IBM=1,NMIL
DIFF(IBM)=DIFHOM(IG)
ENDDO
ENDIF
ELSE
DIFF(:NMIL)=0.0
ENDIF
CALL LCMGET(KPMAC2,'NTOT0',GAR)
CALL LCMGET(KPMAC2,'SCAT00',WORK)
CALL LCMGET(KPMAC2,'NJJS00',NJJ)
CALL LCMGET(KPMAC2,'IJJS00',IJJ)
CALL LCMGET(KPMAC2,'IPOS00',IPOS)
DO IBM=1,NMIL
IPOSDE=IPOS(IBM)
DO JG=IJJ(IBM),IJJ(IBM)-NJJ(IBM)+1,-1
* IG <-- JG
RHS2(IBM,IG,JG)=RHS2(IBM,IG,JG)-WORK(IPOSDE)*PHI2(IBM,JG)
IPOSDE=IPOSDE+1
ENDDO
RHS2(IBM,IG,IG)=RHS2(IBM,IG,IG)+(GAR(IBM)+B22*DIFF(IBM))*
> PHI2(IBM,IG)
ENDDO
CALL LCMGET(KPMAC2,'NUSIGF',NUF2)
DO IBM=1,NMIL
DO IFIS=1,NFIS2
DO JG=1,NG
LHS2(IBM,JG,IG)=LHS2(IBM,JG,IG)+CHI2(IBM,IFIS,JG)*
> NUF2(IBM,IFIS)*PHI2(IBM,IG)
ENDDO
ENDDO
ENDDO
ENDDO
DEALLOCATE(DIFF,DIFHOM,NUF2,CHI2,NUF1,CHI1,WORK,GAR,IPOS,NJJ,IJJ)
*----
* COMPUTE THE ACTUAL AND REFERENCE ABSORPTION AND FISSION RATES
*----
AB1TOT=0.0D0
AB2TOT=0.0D0
FI1TOT=0.0D0
FI2TOT=0.0D0
DO IG=1,NG
OUTG1(IG)=0.0
OUTG2(IG)=0.0
DO IBM=1,NMIL
OUTG1(IG)=OUTG1(IG)+SUM(LHS1(IBM,IG,:NG))/ZKEFF1-
1 SUM(RHS1(IBM,IG,:NG))
OUTG2(IG)=OUTG2(IG)+SUM(LHS2(IBM,IG,:NG))/ZKEFF2-
1 SUM(RHS2(IBM,IG,:NG))
ABS1(IBM,IG)=SUM(RHS1(IBM,:NG,IG))
ABS2(IBM,IG)=SUM(RHS2(IBM,:NG,IG))
AB1TOT=AB1TOT+ABS1(IBM,IG)
AB2TOT=AB2TOT+ABS2(IBM,IG)
FI1TOT=FI1TOT+SUM(LHS1(IBM,:NG,IG))
FI2TOT=FI2TOT+SUM(LHS2(IBM,:NG,IG))
ENDDO
IF(IDF2.GT.0) OUTG2(IG)=OUTG2R(IG,1)-OUTG2R(IG,2)
IF((NALBP.GT.0).AND.(OUTG2(IG).LT.-1.0E-6)) THEN
WRITE(HSMG,'(44HDRENOU: INCONSISTENT REFERENCE LEAKAGE IN GR,
1 3HOUP,I4,7H. LEAK=,1P,E13.4)') IG,OUTG2(IG)
CALL XABORT(HSMG)
ENDIF
ENDDO
*----
* COMPUTE THE ACTUAL LEAKAGE FROM OUT-CURRENTS
*----
OUT=0.0D0
GAMMA(:NUN,:NG)=0.0
IF(NALBP.GT.0) THEN
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
CALL LCMLEN(IPTRK,'QFR',MAXQF,ITYLCM)
ALLOCATE(KN(MAXKN),QFR(MAXQF),IQFR(MAXQF),FLUX(NUN))
CALL LCMGET(IPTRK,'KN',KN)
CALL LCMGET(IPTRK,'QFR',QFR)
CALL LCMGET(IPTRK,'IQFR',IQFR)
JPFLX=LCMGID(IPFLX,'FLUX')
DO IG=1,NG
CALL LCMGDL(JPFLX,IG,FLUX)
CALL DREJ02(ITYPE,IELEM,NREG,NUN,MAXKN,MAXQF,MATCOD,KN,QFR,
1 IQFR,VOL,FLUX,OUTG1(IG),GAMMA(1,IG))
OUT=OUT+OUTG1(IG)
IF(IPRINT.GT.0) THEN
WRITE(6,130) IG,OUTG1(IG)/REAL(AB1TOT),OUTG2(IG)/REAL(AB2TOT)
ENDIF
ENDDO
DEALLOCATE(FLUX,IQFR,QFR,KN)
ENDIF
*----
* COMPUTE MACRO AND REFERENCE K-EFFECTIVE
*----
DEN1=0.0D0
DEN2=0.0D0
DO IG=1,NG
OUTG1(IG)=OUTG1(IG)+SUM(ABS1(:NMIL,IG))
OUTG2(IG)=OUTG2(IG)+SUM(ABS2(:NMIL,IG))
DEN1=DEN1+OUTG1(IG)
DEN2=DEN2+OUTG2(IG)
ENDDO
IF(IPRINT.GT.0) THEN
WRITE(6,'(/24H DRENOU: MACRO KEFF=,1P,E12.5)') FI1TOT/DEN1
WRITE(6,'(/24H DRENOU: REFERENCE KEFF=,1P,E12.5)') FI2TOT/DEN2
ENDIF
*----
* GET INFORMATION FROM L_OPTIMIZE OBJECT
*----
CALL LCMGET(IPGRAD,'DEL-STATE',ISTATE)
IF(ISTATE(4).LE.2) CALL XABORT('DRENOU: NO DIRECT EFFECT WITH '
> //'THIS TYPE OF PERTURBATION.')
IF(ISTATE(7).NE.1) CALL XABORT('DRENOU: IBM1=1 EXPECTED.')
IF(ISTATE(8).NE.NMIL) CALL XABORT('DRENOU: IBM2=NMIL EXPECTED.')
NGR1=ISTATE(5)
NGR2=ISTATE(6)
NPERT=(NMIL+NALBP)*(NGR2-NGR1+1)
NFUNC=(NMIL+NALBP+1)*(NGR2-NGR1+1)
ALLOCATE(VARV(NPERT))
ALLOCATE(FF(NFUNC),DFF(NPERT,NFUNC))
CALL LCMGET(IPGRAD,'VAR-VALUE',VARV)
*----
* COMPUTE THE RMS FUNCTIONAL AND CONSTRAINTS
*----
IREL(:NGR2-NGR1+1)=0
RHS(:NGR2-NGR1+1)=0.0D0
FF(:NFUNC)=0.0D0
WEI=REAL(NMIL)
RMSD=0.0D0
IPERT=0
IFUNC=0
DO IG=NGR1,NGR2
SUM1=0.0D0
DSUM=0.0D0
DO IBM=1,NMIL
IPERT=IPERT+1
IFUNC=IFUNC+1
ABS2M=MAX(EPS*AB2TOT,DBLE(ABS2(IBM,IG)))
DELTA=ABS1(IBM,IG)*AB2TOT/(ABS2M*AB1TOT)-ABS2(IBM,IG)/ABS2M
FF(IFUNC)=DELTA
RMSD=RMSD+DELTA**2
SUM1=SUM1+PHI2(IBM,IG)/VARV(IPERT)
DSUM=DSUM+PHI2(IBM,IG)
ENDDO
IF(NALBP.GT.0) THEN
OUT2M=MAX(EPSL*FI2TOT,DBLE(OUTG2(IG)))
DELTA=OUTG1(IG)*FI2TOT/(OUT2M*FI1TOT)-OUTG2(IG)/OUT2M
IFUNC=IFUNC+1
FF(IFUNC)=SQRT(WEI)*DELTA
RMSD=RMSD+WEI*DELTA**2
ENDIF
DELTA=SUM1/DSUM-1.0D0
IFUNC=IFUNC+1
FF(IFUNC)=DELTA
RMSD=RMSD+DELTA**2
CONST(IG-NGR1+1)=DELTA
IPERT=IPERT+NALBP
ENDDO
IF(IPRINT.GT.0) THEN
WRITE(6,100) RMSD,DOT_PRODUCT(FF,FF)
DO IG=NGR1,NGR2
WRITE(6,110) IG,CONST(IG-NGR1+1)
ENDDO
ENDIF
IF(IPRINT.GT.2) THEN
DO IG=1,NG
WRITE(6,'(7H GROUP=,I4)') IG
DO IBM=1,NMIL
WRITE(6,120) IBM,ABS1(IBM,IG)/REAL(AB1TOT),
1 ABS2(IBM,IG)/REAL(AB2TOT)
ENDDO
ENDDO
ENDIF
*----
* STORE INFORMATION ON L_OPTIMIZE OBJECT
*----
CALL LCMPUT(IPGRAD,'FOBJ-CST-VAL',NFUNC,4,FF)
IF(LNO) GO TO 10
*----
* COMPUTE THE GRADIENT MATRIX OF THE RMS FUNCTIONAL
*----
ALLOCATE(SUNK(NUN))
JPGPT=LCMLID(IPGPT,'ASOUR',NFUNC)
IFUNC=0
DO IG=NGR1,NGR2
DO IBM=1,NMIL
ABS2M=MAX(EPS*AB2TOT,DBLE(ABS2(IBM,IG)))
SOUTOT=AB2TOT/AB1TOT/ABS2M
SOUT2=ABS1(IBM,IG)/AB1TOT
IFUNC=IFUNC+1
KPGPT=LCMLIL(JPGPT,IFUNC,NG)
DO JG=1,NG
SUNK(:NUN)=0.0
DO IR=1,NREG
IUNK=KEYFLX(IR)
IF(IUNK.EQ.0) CYCLE
JBM=MATCOD(IR)
IF(JBM.EQ.0) CYCLE
SA=SIGA(JBM,JG)
SOUT1=0.0D0
IF((IG.EQ.JG).AND.(IBM.EQ.JBM)) SOUT1=1.0D0
SUNK(IUNK)=REAL(SOUTOT*VOL(IR)*SA*(SOUT1-SOUT2))
ENDDO
CALL LCMPDL(KPGPT,JG,NUN,2,SUNK)
ENDDO
ENDDO
IF(NALBP.GT.0) THEN
IFUNC=IFUNC+1
OUT2M=MAX(EPSL*FI2TOT,DBLE(OUTG2(IG)))
SOUTOT=SQRT(WEI)*FI2TOT/FI1TOT/OUT2M
SOUT2=OUTG1(IG)/FI1TOT
KPGPT=LCMLIL(JPGPT,IFUNC,NG)
DO JG=1,NG
SUNK(:NUN)=0.0
DO IR=1,NREG
IUNK=KEYFLX(IR)
IF(IUNK.EQ.0) CYCLE
JBM=MATCOD(IR)
IF(JBM.EQ.0) CYCLE
SA=SIGA(JBM,JG)
SF=SIGF(JBM,JG)
SOUT1=0.0D0
IF(IG.EQ.JG) SOUT1=1.0D0
SUNK(IUNK)=REAL(SOUTOT*VOL(IR)*(SA*SOUT1-SF*SOUT2))
ENDDO
IF(IG.EQ.JG) THEN
DO IUNK=1,NUN
SOUT1=GAMMA(IUNK,IG)
SUNK(IUNK)=SUNK(IUNK)+REAL(SOUTOT*SOUT1)
ENDDO
ENDIF
CALL LCMPDL(KPGPT,JG,NUN,2,SUNK)
ENDDO
ENDIF
IFUNC=IFUNC+1
KPGPT=LCMLIL(JPGPT,IFUNC,NG)
SUNK(:NUN)=0.0
DO JG=1,NG
CALL LCMPDL(KPGPT,JG,NUN,2,SUNK)
ENDDO
ENDDO
*----
* CHECK SOURCE ORTHOGONALITY
*----
ALLOCATE(FLUX(NUN))
JPFLX=LCMGID(IPFLX,'FLUX')
DO IFUNC=1,NFUNC
KPGPT=LCMGIL(JPGPT,IFUNC)
AIL=0.0D0
BIL=0.0D0
DO IG=1,NG
CALL LCMGDL(KPGPT,IG,SUNK)
CALL LCMGDL(JPFLX,IG,FLUX)
DO IUNK=1,NUN
GAZ=FLUX(IUNK)*SUNK(IUNK)
DAZ=FLUX(IUNK)**2
AIL=AIL+GAZ
BIL=BIL+DAZ
ENDDO
ENDDO
DSUM=ABS(AIL)/ABS(BIL)/REAL(NUN)
IF(IPRINT.GT.3) THEN
WRITE(6,'(/21H DRENOU: DOT PRODUCT=,1P,E11.4,11H COMPONENT=,
1 I5)') DSUM,IFUNC
ENDIF
IF(ABS(DSUM).GT.1.0E-4) THEN
WRITE(HSMG,'(36HDRENOU: NON ORTHOGONAL SOURCE (DSUM=,1P,E11.3,
1 26H) FOR INDIVIDUAL COMPONENT,I5,1H.)') DSUM,IFUNC
CALL XABORT(HSMG)
ENDIF
ENDDO
DEALLOCATE(FLUX,SUNK)
*----
* COMPUTE THE DIRECT GRADIENT MATRIX
*----
IFUNC=0
DFF(:NPERT,:NFUNC)=0.0D0
DO IG=NGR1,NGR2
DSUM=0.0D0
DO IBM=1,NMIL
DSUM=DSUM+PHI2(IBM,IG)
ENDDO
DO IBM=1,NMIL
ABS2M=MAX(EPS*AB2TOT,DBLE(ABS2(IBM,IG)))
SOUTOT=ABS1(IBM,IG)*AB2TOT/AB1TOT/ABS2M
IFUNC=IFUNC+1
IPERT=0
DO JG=NGR1,NGR2
DO JBM=1,NMIL
IPERT=IPERT+1
IF((IG.EQ.JG).AND.(IBM.EQ.JBM)) THEN
DFF(IPERT,IFUNC)=DFF(IPERT,IFUNC)+SOUTOT/VARV(IPERT)
ENDIF
DFF(IPERT,IFUNC)=DFF(IPERT,IFUNC)-SOUTOT*ABS1(JBM,JG)/
> AB1TOT/VARV(IPERT)
ENDDO
IF(NALBP.GT.0) IPERT=IPERT+1
ENDDO
ENDDO
IF(NALBP.GT.0) THEN
IFUNC=IFUNC+1
IPERT=0
OUT2M=MAX(EPSL*FI2TOT,DBLE(OUTG2(IG)))
SOUTOT=SQRT(WEI)*FI2TOT/FI1TOT/OUT2M
DO JG=NGR1,NGR2
DO JBM=1,NMIL
IPERT=IPERT+1
IF(IG.EQ.JG) THEN
DFF(IPERT,IFUNC)=DFF(IPERT,IFUNC)+SOUTOT*ABS1(JBM,JG)/
> VARV(IPERT)
ENDIF
DFF(IPERT,IFUNC)=DFF(IPERT,IFUNC)-SOUTOT*OUTG1(IG)*
> SUM(LHS1(JBM,:NG,JG))/FI1TOT/VARV(IPERT)
ENDDO
IPERT=IPERT+1
ENDDO
ENDIF
IFUNC=IFUNC+1
IPERT=0
DO JG=NGR1,NGR2
DO JBM=1,NMIL
IPERT=IPERT+1
IF(IG.EQ.JG) THEN
DFF(IPERT,IFUNC)=DFF(IPERT,IFUNC)-PHI2(JBM,IG)/(DSUM*
> VARV(IPERT)**2)
ENDIF
ENDDO
IF(NALBP.GT.0) IPERT=IPERT+1
ENDDO
ENDDO
CALL LCMPUT(IPGRAD,'GRADIENT-DIR',NPERT*NFUNC,4,DFF)
*----
* MODIFY STATE VECTOR OF OPTIMIZE OBJECT
*----
10 CALL LCMGET(IPGRAD,'STATE-VECTOR',ISTATE)
ISTATE(2)=NFUNC-1
ISTATE(8)=4
CALL LCMPUT(IPGRAD,'STATE-VECTOR',NSTATE,1,ISTATE)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(DFF,FF)
DEALLOCATE(VARV,SIGF,SIGA,OUTG2R,OUTG2,OUTG1,GAMMA,RHS,IREL,CONST,
1 LHS2,RHS2,LHS1,RHS1,ABS2,ABS1,PHI2,PHI1)
RETURN
*
100 FORMAT(/40H DRENOU: RMS ERROR ON RATE DISTRIBUTION=,1P,2E11.4)
110 FORMAT(23H DRENOU: CONSTRAINT(,I4,2H)=,1P,E11.4)
120 FORMAT(5X,16HABSORPTION RATE(,I4,2H)=,1P,2E12.4)
130 FORMAT(5X,6HGROUP=,I4,9H LEAKAGE=,1P,2E12.4)
END
|