1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
*DECK D2PADF
SUBROUTINE D2PADF (IPDAT,IPRINT,NG,NMIL, ADF, NSF, DIFC,CURRN,
1 SRFLX,ZAFLX,RPAR,IPAR,ADF_T,STAIDX,NVAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* CALL to GET_SAP_ADF to recover ADF information.
*
*Author(s):
* J. Taforeau
*
*Parameters:
* IPDAT
* IPRINT
* NG
* NMIL
* ADF
* NSF
* DIFC
* CURRN
* SRFLX
* ZAFLX
* RPAR
* IPAR
* ADF_T
* STAIDX
* NVAR
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPDAT,IPTH,KPTH
INTEGER IPRINT,NG,NMIL,NSF,IPAR(3,NSF),NVAR
REAL ADF(NSF,NG,10),DIFC(NG),CURRN(NSF,NG,2),SRFLX(NSF,NG),
1 ZAFLX(NMIL,NG)
DOUBLE PRECISION RPAR(6,NSF)
CHARACTER*3 ADF_T
INTEGER STAIDX(NVAR) ! Index of current branch state values
*----
* LOCAL VARIABLES
*----
REAL SIDE,APOTHEM,VOLUME
INTEGER :: NSD = 4
INTEGER TOS(-1:1,-1:1)
REAL SIGF(4)
INTEGER DX, DY, SOT, IAXIS
INTEGER NAXIS,NPAIR(2),CAXIS(4),PAXIS(0:1,2),TRF_I(2,4)
INTEGER ICELL(2),NSURF(2)
INTEGER IND, NZ, NC, IPAIR, IA, IP, NSURFAC,P, TR,NS,NGRP
REAL*8 :: J_NET,J_PLUS,J_MINOS,FI_HET,TRANSV_CURR,FI_HOMOG,FAVE
REAL*8 :: J_SUMM
REAL :: B2_VECT(NMIL,NG), DIFF_C(NMIL,NG) ! B2 and D vectors
REAL :: APOTH(NMIL,4)
LOGICAL :: HASSYM(2,NMIL)
INTEGER INTCORR(0:1,1,2)
REAL CURR_INFO(1:(NMIL+1),NG,NSF,9)
IF(NMIL > 1) CALL XABORT ('@D2P: MORE THAN 1 MIXTRURE ')
IF(NSF .NE. NSD) CALL XABORT('@D2PADF: NUMBER OF SURFACE NE 4')
SIDE= REAL(MAXVAL(RPAR(5,:)))
APOTHEM= SIDE/2.0
VOLUME= NSF*SIDE*APOTHEM/2.0
CURR_INFO= 0.0
! TOS is the interface number corresponding to the cell
! to the right of the equation number (interface)
TOS= 0
TOS( 0, 1)= 4 !DX=0 DY>0 west
TOS( 0,-1)= 2 !DX=0 DY<0 east
TOS( 1, 0)= 1 !DX>0 DY=0 north
TOS(-1, 0)= 3 !DX<0 DY=0 south
SIGF(1)= 1.
SIGF(2)= 1.
SIGF(3)= 1.
SIGF(4)= 1.
!deltas in sense counterclokwise around the geometry
!AXIS 1 DX>0 DY=0
!AXIS 2 DX=0 DY>0
NPAIR= 0
NAXIS= 2
INTCORR= 0
!AXIS 1
INTCORR(0,1,1)= 1
INTCORR(1,1,1)= 3
NPAIR(1)= 1
!AXIS 2
INTCORR(0,1,2)= 2
INTCORR(1,1,2)= 4
NPAIR(2)= 1
!axis not crossing the surface
CAXIS(1)= 1
CAXIS(2)= 2
CAXIS(3)= CAXIS(1)
CAXIS(4)= CAXIS(2)
!axis crossing a surface
PAXIS(0,1)= 2
PAXIS(1,1)= 4
PAXIS(0,2)= 1
PAXIS(1,2)= 3
HASSYM= .FALSE.
! coefficient related to the transversal component of the J+.
! each surface has its 2 transversal components
! first surface
TRF_I(1,1)= 2
TRF_I(2,1)= 4
! 2-nd surface
TRF_I(1,2)= 1
TRF_I(2,2)= 3
! 3-th surface
TRF_I(1,3)= 2
TRF_I(2,3)= 4
! 4-th surface
TRF_I(1,4)= 1
TRF_I(2,4)= 3
ADF=0.0
SOT=0
CURR_INFO= 0.0 !this is needed to know where to apply simmetries
DO NS= 1,NSF
ICELL(1)= IPAR(2,NS)
ICELL(2)= IPAR(3,NS)
IF(RPAR(3,NS).LT.-1.E-3) THEN
DX = -1
ELSEIF(RPAR(3,NS).GT.1.E-3) THEN
DX = 1
ELSE
DX = 0
ENDIF
IF(RPAR(4,NS).LT.-1.E-3) THEN
DY = -1
ELSEIF(RPAR(4,NS).GT.1.E-3) THEN
DY = 1
ELSE
DY = 0
ENDIF
! check for the boundary regions
IF(ICELL(1).LE.0) THEN
ICELL(1)= NMIL+1
! WRITE (*,*) 'BORDER TO THE RIGHT! MESH CH ', ICELL(1)
ENDIF
IF(ICELL(2).LE.0) THEN
ICELL(2)= NMIL+1
! WRITE (*,*) 'BORDER TO THE LEFT! MESH CH ', ICELL(2)
ENDIF
! equations at the boundary:
! mesh on the left indicator of the surface ------------
IF(TOS(DX,DY).EQ.1) SOT= 3
IF(TOS(DX,DY).EQ.2) SOT= 4
IF(TOS(DX,DY).EQ.3) SOT= 1
IF(TOS(DX,DY).EQ.4) SOT= 2
!
!-------------------------------------------------------
! loop for the values of the J+-, J, FI
DO NGRP= 1,NG
! J+
CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),1)=
> CURRN(NS,NGRP,2)/REAL(RPAR(5,NS))
CURR_INFO(ICELL(2),NGRP,SOT,1)=
> CURRN(NS,NGRP,1)/REAL(RPAR(5,NS))
! J-
CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),2)=
> CURRN(NS,NGRP,1)/REAL(RPAR(5,NS))
CURR_INFO(ICELL(2),NGRP,SOT ,2)=
> CURRN(NS,NGRP,2)/REAL(RPAR(5,NS))
! J
CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),3)=
> CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),1) -
> CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),2)
CURR_INFO(ICELL(2),NGRP,SOT ,3)=
> CURR_INFO(ICELL(2),NGRP,SOT ,1) -
> CURR_INFO(ICELL(2),NGRP,SOT ,2)
! F-surf(het)
IF(ICELL(1).EQ.(NMIL+1)) THEN
IF(HASSYM(CAXIS(SOT),ICELL(2))) THEN
CURR_INFO(ICELL(2),NGRP,SOT,4) = 0.0
ELSE
CURR_INFO(ICELL(2),NGRP,SOT,4) = SRFLX(NS,NGRP)
> / REAL(RPAR(5,NS))
ENDIF
ELSEIF(ICELL(2).EQ.(NMIL+1)) THEN
IF(HASSYM(CAXIS(TOS(DX,DY)),ICELL(1))) THEN
CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),4) = 0.0
ELSE
CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),4) =
> SRFLX(NS,NGRP)/REAL(RPAR(5,NS))
ENDIF
ELSE ! both cells are real
CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),4) =
> SRFLX(NS,NGRP)/REAL(RPAR(5,NS))
CURR_INFO(ICELL(2),NGRP,SOT ,4) =
> SRFLX(NS,NGRP)/REAL(RPAR(5,NS))
ENDIF
! side dimension
CURR_INFO(ICELL(1),NGRP,TOS(DX,DY),9)= REAL(RPAR(5,NS))
CURR_INFO(ICELL(2),NGRP,SOT ,9)= REAL(RPAR(5,NS))
NSURF(1)= TOS(DX,DY)
NSURF(2)= SOT
DO IND= 1,2
IF(ICELL(IND) < (NMIL+1)) THEN
NZ= ICELL(IND)
! FI
CURR_INFO(NZ,NGRP,:,5)=ZAFLX(NZ,NGRP)
ENDIF
ENDDO
ENDDO
ENDDO ! NS
DO NC= 1,NMIL
DO IAXIS= 1,NAXIS
IF(HASSYM(IAXIS,NC)) THEN
DO IPAIR= 1,NPAIR(IAXIS)
! put current value in the interface in front of it
IF(CURR_INFO(NC,1,INTCORR(0,IPAIR,IAXIS),4).NE.0.) THEN
CURR_INFO(NC,:,INTCORR(1,IPAIR,IAXIS),1:9)=
> CURR_INFO(NC,:,INTCORR(0,IPAIR,IAXIS),1:9)
ELSEIF(CURR_INFO(NC,1,INTCORR(1,IPAIR,IAXIS),4).NE.0.)
> THEN
CURR_INFO(NC,:,INTCORR(0,IPAIR,IAXIS),1:9)=
> CURR_INFO(NC,:,INTCORR(1,IPAIR,IAXIS),1:9)
ENDIF
ENDDO
ENDIF
ENDDO
! now put the possible zero dimension values
DO IA= 1,NAXIS
DO IP= 1,NPAIR(IA)
! put current value in the interface in front of it
IF(CURR_INFO(NC,1,INTCORR(0,IP,IA),9) .NE. 0.) THEN
ELSE
CURR_INFO(NC,:,INTCORR(0,IP,IA),1:9) =
> CURR_INFO(NC,:,INTCORR(1,IP,IA),1:9)
ENDIF
IF(CURR_INFO(NC,1,INTCORR(1,IP,IA),9) .NE. 0.)THEN
ELSE
CURR_INFO(NC,:,INTCORR(1,IP,IA),1:9) =
> CURR_INFO(NC,:,INTCORR(0,IP,IA),1:9)
ENDIF
ENDDO
ENDDO
ENDDO ! NC
!-------------------------------------------------------
DO NC= 1,NMIL
DO NSURFAC= 1,NSD
DO NGRP= 1,NG
DIFF_C(NC,NGRP)= DIFC(NGRP)
J_PLUS = CURR_INFO(NC,NGRP,NSURFAC,1)
J_MINOS= CURR_INFO(NC,NGRP,NSURFAC,2)
J_NET = CURR_INFO(NC,NGRP,NSURFAC,3)
FI_HET = CURR_INFO(NC,NGRP,NSURFAC,4)
FAVE = CURR_INFO(NC,NGRP,NSURFAC,5)
APOTH(NC,NSURFAC)=
> CURR_INFO(NC,NGRP,PAXIS(0,CAXIS(NSURFAC)),9)/2.0
CURR_INFO(NC,NGRP,NSURFAC,8)= APOTH(NC,NSURFAC)
FI_HOMOG = SIGF(NSURFAC)*J_NET * APOTH(NC,NSURFAC)
> / DIFF_C(NC,NGRP) + FAVE
! FG:
CURR_INFO(NC,NGRP,NSURFAC,6)= REAL(FI_HET / FI_HOMOG)
! FS:
CURR_INFO(NC,NGRP,NSURFAC,7)= REAL(2. *
> ( J_PLUS + J_MINOS ) / FI_HOMOG)
ENDDO !NGRP
ENDDO !NSURFAC
ENDDO !NC
!
! B2 loop:
!
DO NCELL= 1,NMIL
DO NGRP= 1,NG
J_SUMM = SUM(CURR_INFO(NCELL,NGRP,:,3))
B2_VECT(NCELL,NGRP)= REAL(J_SUMM / ( DIFF_C(NCELL,NGRP)
> * CURR_INFO(NCELL,NGRP,1,5) ))
ENDDO
ENDDO
DO NCELL= 1,NMIL
DO NGRP= 1,NG
DO NSURFAC= 1,NSD
! TRANSVERSAL CURRENTS SUMMATION
TRANSV_CURR= 0.
DO TR= 1,2
TRANSV_CURR= TRANSV_CURR +
> CURR_INFO(NCELL,NGRP,TRF_I(TR,NSURFAC),3)
ENDDO
! no need to be stored !!!!
! CURR_INFO(NCELL,NGRP,NSURFAC,8)= TRANSV_CURR
ENDDO
ENDDO
ENDDO
! store new IDF in the corresponding module to be used in
! writenemtab
DO NCELL= 1,NMIL
DO NGRP= 1,NG
! B2XS(K,NCELL,NGRP)=B2_VECT(NCELL,NGRP)
DO NSURFAC= 1,NSD
DO P=1,9
! 1 -> J+
! 2 -> J-
! 3 -> J
! 4 -> F-surf
! 5 -> F-ave
! 6 -> GET_IDF
! 7 -> SEL_IDF
! 8 -> apotheme
! 9 -> side length
ADF(NSURFAC,NGRP,P)=CURR_INFO(NCELL,NGRP,NSURFAC,P)
ENDDO
ENDDO
ENDDO
ENDDO
IF(IPRINT > 1) THEN
WRITE(6,*) "*** RECOVER ASSEMBLY DISCONTINUITY FACTOR ***"
IF(ADF_T.EQ.'GET') WRITE(6,*) "ADF TYPE : GET "
IF(ADF_T.EQ.'SEL') WRITE(6,*) "ADF TYPE : SELENGUT "
DO NGRP=1, NG
WRITE(6,*) "GROUP :",NGRP
IF(ADF_T.EQ.'GET') WRITE(6,*)"ADF(N/E/S/W) :",ADF (:,NGRP,6)
IF(ADF_T.EQ.'SEL') WRITE(6,*)"ADF(N/E/S/W) :",ADF (:,NGRP,7)
ENDDO
ENDIF
CALL LCMSIX(IPDAT,' ',0)
CALL LCMSIX(IPDAT,'SAPHYB_INFO',1)
CALL LCMSIX(IPDAT,' ',0)
CALL LCMSIX(IPDAT,'BRANCH_INFO',1)
IPTH=LCMGID(IPDAT,'CROSS_SECT')
KPTH=LCMDIL(IPTH,STAIDX(NVAR))
CALL LCMSIX(KPTH,'MACROLIB_XS',1)
IF(ADF_T.EQ.'GET') THEN
CALL LCMPUT(KPTH,'ADF',NSF*NG,2,ADF(:,:,6))
ELSEIF(ADF_T.EQ.'SEL') THEN
CALL LCMPUT(KPTH,'ADF',NSF*NG,2,ADF(:,:,7))
ELSE
CALL XABORT('@D2PADF: UNKNOW ADF TYPE'//ADF_T//'.')
ENDIF
END
|