1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
*DECK CREMAC
SUBROUTINE CREMAC(IPCPO,NISO,NGRP,NL,IMPX,HISO,DENSIT,ILEAK,TOTAL,
1 ZNUG,SNUGF,CHI,OVERV,DIFFX,DIFFY,DIFFZ,H,SCAT,FLUX,UPS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Add the microscopic x-sections of the extracted isotopes to the
* macroscopic residual.
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal.
*
*Author(s):
* A. Hebert
*
*Update(s):
* E. Varin (2010/01/26)
*
*Parameters: input
* IPCPO pointer to l_compo information.
* NISO 1+number of extracted isotopes.
* NGRP number of energy groups.
* NL number of legendre orders (=1 for isotropic scattering).
* IMPX print parameter (=0 for no print).
* HISO hollerith name information for extracted isotopes.
* DENSIT number densities.
* UPS =.true.: no upscatering cross sections will be stored.
*
*Parameters: output
* ILEAK diffusion coefficient flag (=1: isotropic; =2: anisotropic).
* TOTAL total macroscopic x-sections.
* ZNUG nu*fission macroscopic x-sections.
* SNUGF fission macroscopic x-sections.
* CHI fission spectrum.
* OVERV reciprocal neutron velocities.
* DIFFX x-directed diffusion coefficients.
* DIFFY y-directed diffusion coefficients.
* DIFFZ z-directed diffusion coefficients.
* H h-factors (kappa*fission macroscopic x-sections).
* SCAT scattering macroscopic x-sections.
* FLUX integrated fluxes.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPCPO
INTEGER NISO,NGRP,NL,IMPX,ILEAK,HISO(3*NISO)
REAL DENSIT(NISO),TOTAL(NGRP),ZNUG(NGRP),SNUGF(NGRP),CHI(NGRP),
1 OVERV(NGRP),DIFFX(NGRP),DIFFY(NGRP),DIFFZ(NGRP),H(NGRP),
2 SCAT(NL,NGRP,NGRP),FLUX(NGRP)
LOGICAL UPS
*----
* LOCAL VARIABLES
*----
CHARACTER HMICRO*12,CM*2
LOGICAL LFISS
DOUBLE PRECISION XDRCST,EVJ
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,INDXS
REAL, ALLOCATABLE, DIMENSION(:) :: WORK2,ENGFIS
REAL, ALLOCATABLE, DIMENSION(:,:) :: WORK1
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IJJ(NGRP),NJJ(NGRP),WORK1(NGRP,3),WORK2(NGRP*NGRP),
1 INDXS(21+NL),ENGFIS(NISO))
*----
* RECOVER MACROSCOPIC RESIDUAL OF VECTORIAL X-SECTIONS
*----
EVJ=XDRCST('eV','J')
DO 10 IGR=1,NGRP
TOTAL(IGR)=0.0
DIFFX(IGR)=0.0
DIFFY(IGR)=0.0
DIFFZ(IGR)=0.0
ZNUG(IGR)=0.0
SNUGF(IGR)=0.0
CHI(IGR)=0.0
10 CONTINUE
CALL LCMGET(IPCPO,'FLUX-INTG',FLUX)
CALL LCMGET(IPCPO,'OVERV',OVERV)
CALL LCMGET(IPCPO,'ISOTOPES-EFJ',ENGFIS)
CALL LCMSIX(IPCPO,'MACR',1)
CALL LCMGET(IPCPO,'XS-SAVED',INDXS)
IF(INDXS(1).EQ.1)CALL LCMGET(IPCPO,'TOTAL',TOTAL)
ILEAK=0
IF(INDXS(17).EQ.1)THEN
ILEAK=1
CALL LCMGET(IPCPO,'STRD',DIFFX)
ELSE IF(INDXS(18).EQ.1)THEN
ILEAK=2
CALL LCMGET(IPCPO,'STRD X',DIFFX)
CALL LCMGET(IPCPO,'STRD Y',DIFFY)
CALL LCMGET(IPCPO,'STRD Z',DIFFZ)
ENDIF
IF(INDXS(3).EQ.1)THEN
CALL LCMGET(IPCPO,'NUSIGF',ZNUG)
CALL LCMGET(IPCPO,'NFTOT',SNUGF)
CALL LCMGET(IPCPO,'CHI',CHI)
ENDIF
DO 11 IGR=1,NGRP
H(IGR)=ENGFIS(1)*SNUGF(IGR)/REAL(EVJ)
11 CONTINUE
CALL LCMSIX(IPCPO,' ',2)
*----
* RECOVER MICROSCOPIC CONTRIBUTIONS OF VECTORIAL X-SECTIONS
*----
LFISS=.FALSE.
DO 40 ISO=2,NISO
IF(DENSIT(ISO).EQ.0.)GOTO 40
WRITE(HMICRO,'(3A4)') (HISO((ISO-1)*3+I),I=1,3)
CALL LCMLEN(IPCPO,HMICRO,ILENG,ITYLCM)
IF(ILENG.EQ.0)GOTO 40
IF(IMPX.GT.1)WRITE(6,'(/29H CREMAC: PROCESSING ISOTOPE '',A12,
1 16H'' WITH DENSITY =,1P,E13.5,2H .)') HMICRO,DENSIT(ISO)
CALL LCMSIX(IPCPO,HMICRO,1)
CALL LCMGET(IPCPO,'XS-SAVED',INDXS)
IF(INDXS(1).EQ.1)THEN
CALL LCMGET(IPCPO,'TOTAL',WORK1(1,1))
DO 20 IGR=1,NGRP
TOTAL(IGR)=TOTAL(IGR)+DENSIT(ISO)*WORK1(IGR,1)
20 CONTINUE
ENDIF
IF(INDXS(17).EQ.1)THEN
CALL LCMGET(IPCPO,'STRD',WORK1(1,1))
DO 21 IGR=1,NGRP
DIFFX(IGR)=DIFFX(IGR)+DENSIT(ISO)*WORK1(IGR,1)
21 CONTINUE
ELSE IF(INDXS(18).EQ.1)THEN
CALL LCMGET(IPCPO,'STRD X',WORK1(1,1))
CALL LCMGET(IPCPO,'STRD Y',WORK1(1,2))
CALL LCMGET(IPCPO,'STRD Z',WORK1(1,3))
DO 22 IGR=1,NGRP
DIFFX(IGR)=DIFFX(IGR)+DENSIT(ISO)*WORK1(IGR,1)
DIFFY(IGR)=DIFFY(IGR)+DENSIT(ISO)*WORK1(IGR,2)
DIFFZ(IGR)=DIFFZ(IGR)+DENSIT(ISO)*WORK1(IGR,3)
22 CONTINUE
ENDIF
IF(INDXS(3).EQ.1)THEN
CALL LCMGET(IPCPO,'NUSIGF',WORK1(1,1))
CALL LCMGET(IPCPO,'NFTOT',WORK1(1,2))
CALL LCMGET(IPCPO,'CHI',WORK1(1,3))
DO 30 IGR=1,NGRP
LFISS=LFISS.OR.(CHI(IGR).NE.WORK1(IGR,3))
ZNUG(IGR)=ZNUG(IGR)+DENSIT(ISO)*WORK1(IGR,1)
SNUGF(IGR)=SNUGF(IGR)+DENSIT(ISO)*WORK1(IGR,2)
H(IGR)=H(IGR)+DENSIT(ISO)*WORK1(IGR,2)*ENGFIS(ISO)/REAL(EVJ)
30 CONTINUE
ENDIF
CALL LCMSIX(IPCPO,' ',2)
40 CONTINUE
*----
* COMPUTE AN AVERAGE FISSION SPECTRUM
*----
IF(LFISS)THEN
CALL LCMGET(IPCPO,'FLUX-INTG',WORK1(1,1))
CALL LCMSIX(IPCPO,'MACR',1)
CALL LCMGET(IPCPO,'XS-SAVED',INDXS)
IF(INDXS(3).EQ.1)THEN
CALL LCMGET(IPCPO,'NUSIGF',WORK1(1,2))
CALL LCMGET(IPCPO,'CHI',WORK1(1,3))
DO 55 JGR=1,NGRP
DO 50 IGR=1,NGRP
SCAT(1,IGR,JGR)=WORK1(IGR,1)*WORK1(IGR,2)*WORK1(JGR,3)
50 CONTINUE
55 CONTINUE
ELSE
DO 65 JGR=1,NGRP
DO 60 IGR=1,NGRP
SCAT(1,IGR,JGR)=0.
60 CONTINUE
65 CONTINUE
ENDIF
CALL LCMSIX(IPCPO,' ',2)
DO 80 ISO=2,NISO
IF(DENSIT(ISO).EQ.0.)GOTO 80
WRITE(HMICRO,'(3A4)') (HISO((ISO-1)*3+I),I=1,3)
CALL LCMLEN(IPCPO,HMICRO,ILENG,ITYLCM)
IF(ILENG.EQ.0)GOTO 80
CALL LCMSIX(IPCPO,HMICRO,1)
CALL LCMGET(IPCPO,'XS-SAVED',INDXS)
IF(INDXS(3).EQ.1)THEN
CALL LCMGET(IPCPO,'NUSIGF',WORK1(1,2))
CALL LCMGET(IPCPO,'CHI',WORK1(1,3))
DO 75 JGR=1,NGRP
DO 70 IGR=1,NGRP
SCAT(1,IGR,JGR)=SCAT(1,IGR,JGR)+DENSIT(ISO)*
1 WORK1(IGR,1)*WORK1(IGR,2)*WORK1(JGR,3)
70 CONTINUE
75 CONTINUE
ENDIF
CALL LCMSIX(IPCPO,' ',2)
80 CONTINUE
SSUM=0.
DO 95 JGR=1,NGRP
CHI(JGR)=0.
DO 90 IGR=1,NGRP
SSUM=SSUM+SCAT(1,IGR,JGR)
CHI(JGR)=CHI(JGR)+SCAT(1,IGR,JGR)
90 CONTINUE
95 CONTINUE
DO 100 JGR=1,NGRP
CHI(JGR)=CHI(JGR)/SSUM
100 CONTINUE
ENDIF
*----
* RECOVER MACROSCOPIC RESIDUAL OF SCATTERING X-SECTIONS
*----
CALL LCMSIX(IPCPO,'MACR',1)
CALL LCMLEN(IPCPO,'SCAT-SAVED',ILONG,ITYP)
IF(ILONG.EQ.0)THEN
CALL LCMGET(IPCPO,'XS-SAVED',INDXS)
ELSE
CALL LCMGET(IPCPO,'SCAT-SAVED',INDXS(21))
ENDIF
DO 130 IL=1,NL
DO 115 JGR=1,NGRP
DO 110 IGR=1,NGRP
SCAT(IL,IGR,JGR)=0.
110 CONTINUE
115 CONTINUE
WRITE (CM,'(I2.2)') IL-1
IF(INDXS(20+IL).EQ.1)THEN
* OLD COMPO DEFINITION
CALL LCMLEN(IPCPO,'SCAT'//CM,ILONG,ITYP)
IF(ILONG.EQ.0)THEN
WRITE (CM,'(I2)') IL-1
CALL LCMGET(IPCPO,'SCAT'//CM,WORK2)
CALL LCMGET(IPCPO,'NJJ '//CM,NJJ)
CALL LCMGET(IPCPO,'IJJ '//CM,IJJ)
ELSE
CALL LCMGET(IPCPO,'SCAT'//CM,WORK2)
CALL LCMGET(IPCPO,'NJJS'//CM,NJJ)
CALL LCMGET(IPCPO,'IJJS'//CM,IJJ)
ENDIF
IGAR=0
DO 125 JGR=1,NGRP
DO 120 IGR=IJJ(JGR),IJJ(JGR)-NJJ(JGR)+1,-1
IGAR=IGAR+1
SCAT(IL,IGR,JGR)=WORK2(IGAR)
120 CONTINUE
125 CONTINUE
ENDIF
130 CONTINUE
CALL LCMSIX(IPCPO,' ',2)
*----
* RECOVER MICROSCOPIC CONTRIBUTIONS OF SCATTERING X-SECTIONS
*----
DO 160 ISO=2,NISO
IF(DENSIT(ISO).EQ.0.)GOTO 160
WRITE(HMICRO,'(3A4)') (HISO((ISO-1)*3+I),I=1,3)
CALL LCMLEN(IPCPO,HMICRO,ILENG,ITYLCM)
IF(ILENG.EQ.0)GOTO 160
CALL LCMSIX(IPCPO,HMICRO,1)
CALL LCMLEN(IPCPO,'SCAT-SAVED',ILONG,ITYP)
*EV
IF(ILONG.EQ.0)THEN
CALL LCMGET(IPCPO,'XS-SAVED',INDXS)
ELSE
CALL LCMGET(IPCPO,'SCAT-SAVED',INDXS(21))
ENDIF
*EV
DO 150 IL=1,NL
WRITE (CM,'(I2.2)') IL-1
IF(INDXS(20+IL).EQ.1)THEN
* OLD COMPO DEFINITION
CALL LCMLEN(IPCPO,'SCAT'//CM,ILONG,ITYP)
IF(ILONG.EQ.0)THEN
WRITE (CM,'(I2)') IL-1
CALL LCMGET(IPCPO,'SCAT'//CM,WORK2)
CALL LCMGET(IPCPO,'NJJ '//CM,NJJ)
CALL LCMGET(IPCPO,'IJJ '//CM,IJJ)
ELSE
CALL LCMGET(IPCPO,'SCAT'//CM,WORK2)
CALL LCMGET(IPCPO,'NJJS'//CM,NJJ)
CALL LCMGET(IPCPO,'IJJS'//CM,IJJ)
ENDIF
IGAR=0
DO 145 JGR=1,NGRP
DO 140 IGR=IJJ(JGR),IJJ(JGR)-NJJ(JGR)+1,-1
IGAR=IGAR+1
SCAT(IL,IGR,JGR)=SCAT(IL,IGR,JGR)
1 +DENSIT(ISO)*WORK2(IGAR)
140 CONTINUE
145 CONTINUE
ENDIF
150 CONTINUE
CALL LCMSIX(IPCPO,' ',2)
160 CONTINUE
*----
* COMPUTE DIFFUSION COEFFICIENTS FROM STRD X-SECTIONS
*----
CALL LCMSIX(IPCPO,'MACR',1)
CALL LCMGET(IPCPO,'XS-SAVED',INDXS)
CALL LCMSIX(IPCPO,' ',2)
IF(INDXS(17).EQ.1)THEN
DO 170 IGR=1,NGRP
DIFFX(IGR)=1.0/(3.0*DIFFX(IGR))
170 CONTINUE
ELSE IF(INDXS(18).EQ.1)THEN
DO 180 IGR=1,NGRP
DIFFX(IGR)=1.0/(3.0*DIFFX(IGR))
DIFFY(IGR)=1.0/(3.0*DIFFY(IGR))
DIFFZ(IGR)=1.0/(3.0*DIFFZ(IGR))
180 CONTINUE
ENDIF
*----
* COMPUTE TOTAL CROSS SECTION FOR UPSCATERING CORRECTION
*----
IF((UPS).AND.(NGRP.EQ.2))THEN
DO 200 IL=1,NL
TOTAL(2)=TOTAL(2)-SCAT(IL,2,1)
SCAT(IL,2,1)=0.
200 CONTINUE
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(ENGFIS,INDXS,WORK2,WORK1,NJJ,IJJ)
RETURN
END
|