\section{Contents of a \dir{system} directory}\label{sect:systemdir} The {\tt L\_SYSTEM} specification is used to store a set of system matrices (or a set of perturbations on system matrices) obtained after discretization of the algebraic operators contained in the neutron transport or diffusion equation. A complete set of matrices can be written on the root directory. Perturbation matrices corresponding to variations or derivatives of the cross sections can also be found if the \moc{STEP} directory list is present. \subsection{State vector content for the \dir{system} data structure}\label{sect:systemstate} The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}^{s}_{i}$, represents: \begin{itemize} \item $\mathcal{S}^{s}_{1}$: the number of energy groups \item $\mathcal{S}^{s}_{2}$: the order of a system matrix \item $\mathcal{S}^{s}_{3}$: the number of delayed neutron precursor groups \item $\mathcal{S}^{s}_{4}$: the storage type of system matrices: \begin{displaymath} \mathcal{S}^{s}_{4} = \left\{ \begin{array}{rl} 1 & \textrm{BIVAC--compatible profile storage matrices for the diffusion theory} \\ 2 & \textrm{TRIVAC--compatible matrices compatible with the generic ADI splitting in} \\ & \textrm{\Eq{tratr2} or \Eq{tratr3}} \\ 3 & \textrm{TRIVAC--compatible matrices compatible with the Thomas-Raviart ADI} \\ & \textrm{splitting in \Eq{tratr4} or \Eq{tratr5} for the diffusion theory} \\ 11 & \textrm{BIVAC--compatible profile storage matrices for the simplified $P_n$ method} \\ 13 & \textrm{TRIVAC--compatible matrices compatible with the Thomas-Raviart ADI} \\ & \textrm{splitting in \Eq{tratr4} or \Eq{tratr5} for the simplified $P_n$ method} \end{array} \right. \end{displaymath} \item $\mathcal{S}^{s}_{5}$: set to $1$ in case where matrices {\tt 'RM'} are available \item The number of set of perturbation on system matrices $I_{\rm step}=\mathcal{S}^{s}_{6}$ used for perturbation calculations: \begin{displaymath} I_{\rm step} = \left\{ \begin{array}{ll} 0 & \textrm{no {\tt STEP} information available}\\ >0 & \textrm{number of set of perturbation on system matrices.} \end{array} \right. \end{displaymath} \item $\mathcal{S}^{s}_{7}$: number of material mixtures in the macrolib used to construct the system matrices \item $\mathcal{S}^{s}_{8}$: number of Legendre orders used to represent the macroscopic cross sections with the simplified $P_n$ method (maximum integer value of {\tt IL}). Set to zero with the diffusion theory. \item The type of system matrix assemblies $I_{\rm pert}=\mathcal{S}^{s}_{9}$: \begin{displaymath} I_{\rm pert} = \left\{ \begin{array}{ll} 0 & \textrm{calculation of the system matrices}\\ 1 & \textrm{calculation of the derivative of these matrices}\\ 2 & \textrm{calculation of the first variation of these matrices}\\ 3 & \textrm{identical to $I_{\rm pert}=2$, but these variation are added to unperturbed system}\\ & \textrm{matrices.} \end{array} \right. \end{displaymath} \end{itemize} \goodbreak \subsection{The main \dir{system} directory}\label{sect:systemdirmain} On its first level, the following records and sub-directories will be found in the \dir{system} directory: \begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{system}}{8.0cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_SYSTEM\blank{4}}).} \CharEnr {LINK.MACRO\blank{2}}{$*12$} {Name of the {\sc macrolib} on which the system matrices are based.} \CharEnr {LINK.TRACK\blank{2}}{$*12$} {Name of the {\sc tracking} on which the system matrices are based.} \IntEnr {STATE-VECTOR}{$40$} {Vector describing the various parameters associated with this data structure $\mathcal{S}^{s}_{i}$, as defined in \Sect{systemstate}.} \OptRealEnr {ALBEDO\_FU//\{igr\}}{$\mathcal{S}^{M}_{8}$}{$\mathcal{S}^{M}_{8}>0$}{} {Surface ordered physical albedo functions in each group. The number of physical albedos $\mathcal{S}^{M}_{8}$ is defined in \Sect{macrolibstate}. The character suffix {\tt \{igr\}} is the group index defined in format {\tt WRITE(TEXT3,'(I3.3)') igr}.} \RealVar {\{matrix\}}{$N_{\rm dim}$}{} {Set of system matrices} \OptRealVar {\{removalxs\}}{$\mathcal{S}^{s}_{7}$}{$\mathcal{S}^{s}_{4}> 10$}{} {Set of removal cross section arrays used with the simplified $P_n$ method} \OptRealEnr {RM\blank{10}}{$\mathcal{S}^{t}_{11}$}{$\mathcal{S}^{s}_{5}\ne 0$}{} {Unit system matrix, i.e., a system matrix corresponding to cross sections all set to 1.0. This matrix is mandatory in space-time kinetics cases. {\sl This block is always located on the root directory.}} \OptRealEnr {IRM\blank{9}}{$\mathcal{S}^{t}_{11}$}{$\mathcal{S}^{s}_{5}\ne 0$}{} {Inverse of the unit matrix. This record is available only with BIVAC trackings.} \OptDirlEnr {STEP\blank{8}}{$\mathcal{S}^{s}_{6}$}{$\mathcal{S}^{s}_{6}\ge 1$} {List of perturbation sub-directories. Each component of this list contains a set of perturbation on system matrices corresponding to variations or derivatives of the cross sections. Each {\tt STEP} component follows the specification presented in the current \Sect{systemdirmain}.} \end{DescriptionEnregistrement} The signature variable for this data structure must be $\mathsf{SIGNA}$=\verb*|L_SYSTEM |. \begin{figure}[htbp] \begin{center} \epsfxsize=13cm \centerline{ \epsffile{Fig99.eps}} \parbox{14cm}{\caption{Example of a 5 energy group matrix eigenvalue problem}\label{fig:system}} \end{center} \end{figure} The discretized neutron transport or diffusion equation is assumed to be given in a form similar to the matrix system represented in \Fig{system}. Each system matrix \{matrix\} is stored on a block named {\tt TEXT12}, embodying the primary group index {\tt IGR} and the secondary group index {\tt JGR}. \vskip 0.2cm The first case corresponds to the following situations: \begin{itemize} \item BIVAC--type discretization ($\mathcal{S}^{s}_{4}=1$). In this case, the dimension of the matrix is equal to {\tt MU(}$\mathcal{S}^{t}_{11}${\tt)} \item TRIVAC--type discretization of the out-of-group $A$ matrices ({\tt IGR}$\ne${\tt JGR}). In this case, the dimension of the matrix is equal to $\mathcal{S}^{t}_{11}$ \item TRIVAC--type discretization of the $B$ matrices. In this case, the dimension of the matrix is equal to $\mathcal{S}^{t}_{11}$ \end{itemize} The character name of the system matrix is build using \begin{verbatim} WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR \end{verbatim} \vskip 0.1cm \begin{verbatim} WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR \end{verbatim} \noindent or \begin{verbatim} WRITE(TEXT12,'(1HB,3I3.3)') IDEL,JGR,IGR \end{verbatim} \noindent where {\tt IDEL} is the index of a delayed neutron precursor group (if $\mathcal{S}^{s}_{3} \ge 1$). \vskip 0.2cm Otherwise, the TRIVAC--type system matrix is splitted according to Eqs.~(\ref{eq:tratr2}) to~(\ref{eq:tratr5}). The character name of the system matrix is build using \begin{verbatim} WRITE(TEXT12,'(A2,1HA,2I3.3)') PREFIX,IGR,IGR \end{verbatim} \noindent where {\tt PREFIX} is a character*2 name describing the component of the system matrix under consideration. The following values are available: \vskip 0.3cm \begin{tabular}{|l|l|l|} \hline {\tt PREFIX} & type of matrix & dimension $N_{\rm dim}$\\ \hline {\tt W\_} & matrix component $\bf{W}+\bf{P}_w^\top \bf{U}\bf{P}_w$ or $\bf{A}_w+\bf{R}_w\bf{T}^{-1}\bf{R}_w^\top$ & {\tt MUW(}$\mathcal{S}^{t}_{11}${\tt )} or {\tt MUW(}$\mathcal{S}^{t}_{26}${\tt )}\\ {\tt X\_} & matrix component $\bf{X}+\bf{P}_x^\top \bf{U}\bf{P}_x$ or $\bf{A}_x+\bf{R}_x\bf{T}^{-1}\bf{R}_x^\top$ & {\tt MUX(}$\mathcal{S}^{t}_{11}${\tt )} or {\tt MUX(}$\mathcal{S}^{t}_{27}${\tt )} \\ {\tt Y\_} & matrix component $\bf{Y}+\bf{P}_y^\top \bf{U}\bf{P}_y$ or $\bf{A}_y+\bf{R}_y\bf{T}^{-1}\bf{R}_y^\top$ & {\tt MUY(}$\mathcal{S}^{t}_{11}${\tt )} or {\tt MUY(}$\mathcal{S}^{t}_{28}${\tt )} \\ {\tt Z\_} & matrix component $\bf{Z}+\bf{P}_z^\top \bf{U}\bf{P}_z$ or $\bf{A}_z+\bf{R}_z\bf{T}^{-1}\bf{R}_z^\top$ & {\tt MUZ(}$\mathcal{S}^{t}_{11}${\tt )} or {\tt MUZ(}$\mathcal{S}^{t}_{29}${\tt )} \\ {\tt WI} & $LDL^\top$ factors of $\bf{W}+\bf{P}_w^\top \bf{U}\bf{P}_w$ or $\bf{A}_w+\bf{R}_w\bf{T}^{-1}\bf{R}_w^\top$ & {\tt MUW(}$\mathcal{S}^{t}_{11}${\tt )} or {\tt MUW(}$\mathcal{S}^{t}_{26}${\tt )}\\ {\tt XI} & $LDL^\top$ factors of $\bf{X}+\bf{P}_x^\top \bf{U}\bf{P}_x$ or $\bf{A}_x+\bf{R}_x\bf{T}^{-1}\bf{R}_x^\top$ & {\tt MUX(}$\mathcal{S}^{t}_{11}${\tt )} or {\tt MUX(}$\mathcal{S}^{t}_{27}${\tt )} \\ {\tt YI} & $LDL^\top$ factors of $\bf{Y}+\bf{P}_y^\top \bf{U}\bf{P}_y$ or $\bf{A}_y+\bf{R}_y\bf{T}^{-1}\bf{R}_y^\top$ & {\tt MUY(}$\mathcal{S}^{t}_{11}${\tt )} or {\tt MUY(}$\mathcal{S}^{t}_{28}${\tt )} \\ {\tt ZI} & $LDL^\top$ factors of $\bf{Z}+\bf{P}_z^\top \bf{U}\bf{P}_z$ or $\bf{A}_z+\bf{R}_z\bf{T}^{-1}\bf{R}_z^\top$ & {\tt MUZ(}$\mathcal{S}^{t}_{11}${\tt )} or {\tt MUZ(}$\mathcal{S}^{t}_{29}${\tt )} \\ \hline \end{tabular} \vskip 0.3cm \noindent where all these matrices are stored in diagonal storage mode. \vskip 0.3cm The following values of {\tt PREFIX} will also be used in cases where a Thomas-Raviart or Thomas-Raviart-Schneider polynomial basis is used ($\mathcal{S}^{t}_{12}=2$ and $\mathcal{S}^{s}_{4}=3$): \vskip 0.3cm \begin{tabular}{|l|l|l|} \hline {\tt PREFIX} & type of matrix & dimension $N_{\rm dim}$\\ \hline {\tt TF} & matrix component $\bf{T}$ & $\mathcal{S}^{t}_{25}$ \\ {\tt WA} & matrix component $\bf{A}_w$ & {\tt MUW(}$\mathcal{S}^{t}_{26}${\tt )} \\ {\tt XA} & matrix component $\bf{A}_x$ & {\tt MUX(}$\mathcal{S}^{t}_{27}${\tt )} \\ {\tt YA} & matrix component $\bf{A}_y$ & {\tt MUY(}$\mathcal{S}^{t}_{28}${\tt )} \\ {\tt ZA} & matrix component $\bf{A}_z$ & {\tt MUZ(}$\mathcal{S}^{t}_{29}${\tt )} \\ {\tt DIFF} & diffusion coefficients used with the Thomas-Raviart-Schneider method & $N_{\rm los}$ \\ \hline \end{tabular} \vskip 0.3cm \noindent where {\tt TF} is a diagonal matrix and where {\tt WA} to {\tt ZA} are stored in diagonal profiled mode. The dimension of {\tt DIFF} is related to the number of lozenges in the domain: $N_{\rm los}=\mathcal{S}^{t}_{14}\times \mathcal{S}^{t}_{15}\times (\mathcal{S}^{t}_{13})^2$. \vskip 0.3cm Each removal cross section array \{removalxs\} is stored on a block named {\tt TEXT12}, embodying the Legendre order {\tt IL}, the primary group index {\tt IGR} and the secondary group index {\tt JGR}. The block name {\tt TEXT12} is build using \begin{verbatim} WRITE(TEXT12,'(4HSCAR,I2.2,2I3.3)') IL-1,JGR,IGR \end{verbatim} \noindent for the mixture-ordered components of the removal cross section, and \begin{verbatim} WRITE(TEXT12,'(4HSCAI,I2.2,2I3.3)') IL-1,JGR,IGR \end{verbatim} \noindent for the mixture-ordered components of the inverse removal cross section matrix at each Legendre order. \eject