\subsection{The \moc{sybilt} dependent records and sub-directories on a \dir{tracking} directory}\label{sect:sybiltrackingdir} When the \moc{SYBILT:} operator is used ($\mathsf{CDOOR}$={\tt 'SYBIL'}), the following elements in the vector $\mathcal{S}^{t}_{i}$ will also be defined. \begin{itemize} \item The main SYBIL model $\mathcal{S}^{t}_{6}$ \begin{displaymath} \mathcal{S}^{t}_{6} = \left\{ \begin{array}{rl} 2 & \textrm{Pure geometry} \\ 3 & \textrm{Do-it-yourself geometry} \\ 4 & \textrm{2-D assembly geometry} \\ \end{array} \right. \end{displaymath} \item Minimum space required to store tracks for assembly geometry $\mathcal{S}^{t}_{7}$ \item Minimum space required to store interface currents for assembly geometry $\mathcal{S}^{t}_{8}$ \item Number of additional unknowns holding the interface currents $\mathcal{S}^{t}_{9}$. These unknowns are used if and only if a current--based inner iterative method is set (with option \moc{ARM}). \end{itemize} The following sub-directories will also be present on the main level of a \dir{tracking} directory. \begin{DescriptionEnregistrement}{The \moc{sybilt} records and sub-directories in \dir{tracking}}{8.0cm}\label{table:puregeom} \RealEnr {EPSJ\blank{8}}{$1$}{$1$} {Stopping criterion for flux-current iterations of the interface current method} \OptDirEnr {PURE-GEOM\blank{3}}{$\mathcal{S}^{t}_{6}=2$} {Sub-directory containing the data related to a pure geometry} \OptDirEnr {DOITYOURSELF}{$\mathcal{S}^{t}_{6}=3$} {Sub-directory containing the data related to a do-it-yourself geometry} \OptDirEnr {EURYDICE\blank{4}}{$\mathcal{S}^{t}_{6}=4$} {Sub-directory containing the data related to an assembly geometry} \end{DescriptionEnregistrement} \vskip -0.4cm \noindent where the sub-directories in Table~\ref{table:puregeom} are described in the following subsections. \subsubsection{The \moc{/PURE-GEOM/} sub-directory in \moc{sybilt}}\label{sect:puregeomtrackingdir} \begin{DescriptionEnregistrement}{The contents of the \moc{sybilt} \moc{/PURE-GEOM/} sub-directory}{8.0cm} \IntEnr {PARAM\blank{7}}{$6$} {Record containing the parameters for a SYBIL tracking on a pure geometry $\mathcal{P}_{i}$} \IntEnr {NCODE\blank{7}}{$6$} {Record containing the types of boundary conditions on each surface $N_{\beta,j}$} \RealEnr {ZCODE\blank{7}}{$6$}{$1$} {Record containing the albedo value on each surface} \OptRealEnr {XXX\blank{9}}{$\mathcal{P}_{4}+1$}{$\mathcal{P}_{4}\ge 1$}{cm} {$x-$directed mesh coordinates after mesh-splitting for type 2, 5 and 7 geometries. Region-ordered radius after mesh-splitting for type 3 and 6 geometries} \OptRealEnr {YYY\blank{9}}{$\mathcal{P}_{5}+1$}{$\mathcal{P}_{5}\ge 1$}{cm} {$y-$directed mesh coordinates after mesh-splitting for type 5, 6 and 7 geometries} \OptRealEnr {ZZZ\blank{9}}{$\mathcal{P}_{6}+1$}{$\mathcal{P}_{6}\ge 1$}{cm} {$z-$directed mesh coordinates after mesh-splitting for type 7 and 9 geometries} \OptRealEnr {SIDE\blank{8}}{$1$}{$\mathcal{P}_{1}\ge 8$}{cm} {Side of a hexagon for type 8 and 9 geometries} \end{DescriptionEnregistrement} \vskip -0.2cm \noindent with the dimension parameter $\mathcal{P}_{i}$, representing: \begin{itemize} \item The type of geometry $\mathcal{P}_{1}$ \begin{displaymath} \mathcal{P}_{1} = \left\{ \begin{array}{rl} 2 & \textrm{Cartesian 1-D geometry} \\ 3 & \textrm{Tube 1-D geometry} \\ 4 & \textrm{Spherical 1-D geometry} \\ 5 & \textrm{Cartesian 2-D geometry} \\ 6 & \textrm{Tube 2-D geometry} \\ 7 & \textrm{Cartesian 3-D geometry} \\ 8 & \textrm{Hexagonal 2-D geometry} \\ 9 & \textrm{Hexagonal 3-D geometry} \\ \end{array} \right. \end{displaymath} \item The type of hexagonal symmetry $\beta_{h}=\mathcal{P}_{2}$ \begin{displaymath} \beta_{h} = \left\{ \begin{array}{rl} 1 & \textrm{S30} \\ 2 & \textrm{SA60} \\ 3 & \textrm{SB60} \\ 4 & \textrm{S90} \\ 5 & \textrm{R120} \\ 6 & \textrm{R180} \\ 7 & \textrm{SA180} \\ 8 & \textrm{SB180} \\ 9 & \textrm{COMPLETE} \\ \end{array} \right. \end{displaymath} \item The quadrature parameter $\mathcal{P}_{3}$ \item The number of $x-$directed or radial mesh intervals in the geometry $\mathcal{P}_{4}$ \item The number of $y-$directed mesh intervals in the geometry $\mathcal{P}_{5}$ \item The number of $z-$directed mesh intervals in the geometry $\mathcal{P}_{6}$ \end{itemize} The type of boundary conditions used will be defined in the following way \begin{displaymath} N_{\beta,j} = \left\{ \begin{array}{rl} 0 & \textrm{Not used} \\ 1 & \textrm{Void boundary condition} \\ 2 & \textrm{Reflection boundary condition} \\ 3 & \textrm{Diagonal reflection boundary condition} \\ 4 & \textrm{Translation boundary condition condition} \\ 5 & \textrm{Symmetric reflection boundary condition} \\ 6 & \textrm{Albedo boundary condition} \\ \end{array} \right. \end{displaymath} \subsubsection{The \moc{/DOITYOURSELF/} sub-directory in \moc{sybilt}}\label{sect:doittrackingdir} \vskip -0.9cm \begin{DescriptionEnregistrement}{The contents of the \moc{sybilt} \moc{/DOITYOURSELF/} sub-directory}{8.0cm} \IntEnr {PARAM\blank{7}}{$3$} {Record containing the parameters for a SYBIL tracking on a do-it-yourself geometry $\mathcal{P}_{i}$} \IntEnr {NMC\blank{9}}{$M+1$} {Offset of the first region in each cell} \RealEnr {RAYRE\blank{7}}{$N_r+M$}{cm} {Radius of the tubes in each cell} \RealEnr {PROCEL\blank{6}}{$M,M$}{} {Geometric matrix} \RealEnr {POURCE\blank{6}}{$M$}{} {Weight assigned to each cell} \RealEnr {SURFA\blank{7}}{$M$}{cm$^{2}$} {Surface of each cell } \end{DescriptionEnregistrement} \noindent with the dimension parameter $\mathcal{P}_{i}$, representing: \begin{itemize} \item The number of cells $\mathcal{P}_{1}=M$ \item The quadrature parameter $\mathcal{P}_{2}$ \item The statistical option $\mathcal{P}_{3}$ \begin{displaymath} \mathcal{P}_{3} = \left\{ \begin{array}{rl} 0 & \textrm{the statistical approximation is not used. Record {\tt 'PROCEL'} is used.} \\ 1 & \textrm{use the statistical approximation. Record {\tt 'PROCEL'} is not used.} \end{array} \right. \end{displaymath} \end{itemize} \clearpage \subsubsection{The \moc{/EURYDICE/} sub-directory in \moc{sybilt}}\label{sect:eurydicetrackingdir} \vskip -0.9cm \begin{DescriptionEnregistrement}{The contents of the \moc{sybilt} \moc{/EURYDICE/} sub-directory}{8.0cm} \IntEnr {PARAM\blank{7}}{$16$} {Record containing the parameters for a SYBIL tracking on an assembly geometry $\mathcal{P}_{i}$} \RealEnr {XX\blank{10}}{$\mathcal{P}_{6}$}{cm} {$x-$thickness of the generating cells} \RealEnr {YY\blank{10}}{$\mathcal{P}_{6}$}{cm} {$y-$thickness of the generating cells} \IntEnr {LSECT\blank{7}}{$\mathcal{P}_{6}$} {Type of sectorization for each each generating cell. Equal to zero for non-sectorized cells. Allowed values are defined as $F_{\mathrm{sec}}$ in \Sect{geometrydirmain}} \IntEnr {NMC\blank{9}}{$\mathcal{P}_{6}+1$} {Offset of the first region index in each generating cell} \IntEnr {NMCR\blank{8}}{$\mathcal{P}_{6}+1$} {Offset of the first radius index in each generating cell. Equal to {\tt NMC}, unless the cell is sectorized.} \RealEnr {RAYRE\blank{7}}{$M_r$}{cm} {Radius of the tubes in each generating cell. $M_r=${\tt NMCR(}$\mathcal{P}_{6}+1${\tt )}} \IntEnr {MAIL\blank{8}}{$2,\mathcal{P}_{6}$} {Offsets of the first tracking information in each generating cell. {\tt MAIL(1,:)} contains offsets for the integer array {\tt ZMAILI}; {\tt MAIL(2,:)} contains offsets for the real array {\tt ZMAILR}.} \IntEnr {ZMAILI\blank{6}}{$\mathcal{P}_{15}$} {The integer tracking information} \RealEnr {ZMAILR\blank{6}}{$\mathcal{P}_{16}$}{cm} {The tracking lengths} \IntEnr {IFR\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$} {Index numbers of incoming currents} \RealEnr {ALB\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}{} {Albedo or transmission factors corresponding to incoming currents} \IntEnr {INUM\blank{8}}{$\mathcal{P}_{4}$} {Index number of the merge cell associated to each cell of the assembly} \IntEnr {MIX\blank{9}}{$\mathcal{P}_{5},\mathcal{P}_{14}$} {Index numbers of outgoing currents} \RealEnr {DVX\blank{9}}{$\mathcal{P}_{5},\mathcal{P}_{14}$}{} {Weights corresponding to outgoing currents} \RealEnr {SUR\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}{cm} {Interface surfaces corresponding to incoming currents} \IntEnr {IGEN\blank{8}}{$\mathcal{P}_{5}$} {Index number of the generating cell associated to each merged cell} \end{DescriptionEnregistrement} \noindent with the dimension parameter $\mathcal{P}_{i}$, representing: \begin{itemize} \item The type of hexagonal symmetry $\mathcal{P}_{1}$ \begin{displaymath} \mathcal{P}_{1} = \left\{ \begin{array}{rl} 0 & \textrm{Cartesian assembly} \\ 1 & \textrm{S30} \\ 2 & \textrm{SA60} \\ 3 & \textrm{SB60} \\ 4 & \textrm{S90} \\ 5 & \textrm{R120} \\ 6 & \textrm{R180} \\ 7 & \textrm{SA180} \\ 8 & \textrm{SB180} \\ 9 & \textrm{COMPLETE} \\ \end{array} \right. \end{displaymath} \item The type of multicell approximation $\mathcal{P}_{2}$ \begin{displaymath} \mathcal{P}_{2} = \left\{ \begin{array}{ll} 1 & \textrm{Roth approximation}\\ 2 & \textrm{Roth$\times 4$ or Roth$\times 6$ approximation}\\ 3 & \textrm{DP-0 approximation}\\ 4 & \textrm{DP-1 approximation} \end{array} \right. \end{displaymath} \item The type of cylinderization $\mathcal{P}_{3}$ \begin{displaymath} \mathcal{P}_{3} = \left\{ \begin{array}{ll} 1 & \textrm{Askew cylinderization}\\ 2 & \textrm{Wigner cylinderization}\\ 3 & \textrm{Sanchez cylinderization} \end{array} \right. \end{displaymath} \item The total number of cells $\mathcal{P}_{4}$ \item The number of merged cells $\mathcal{P}_{5}$ \item The number of generating cells $\mathcal{P}_{6}$ \item The number of distinct interface currents $\mathcal{P}_{7}$ \item The number of angles for 2-D quadrature $\mathcal{P}_{8}$ \item The number of segments for 2-D quadrature $\mathcal{P}_{9}$ \item The number of segments for homogeneous 2-D cells $\mathcal{P}_{10}$ \item The number of segments for 1-D cells $\mathcal{P}_{11}$ \item The track normalization option $\mathcal{P}_{12}$ \begin{displaymath} \mathcal{P}_{12} = \left\{ \begin{array}{rl} 0 & \textrm{Normalize the tracks} \\ 1 & \textrm{Do not normalize the tracks} \\ \end{array} \right. \end{displaymath} \item The type of quadrature in angle and space $\mathcal{P}_{13}$ \begin{displaymath} \mathcal{P}_{13} = \left\{ \begin{array}{rl} 0 & \textrm{Gauss quadrature} \\ 1 & \textrm{Equal weight quadrature} \\ \end{array} \right. \end{displaymath} \item The number of outgoing interface currents per cell $\mathcal{P}_{14}$ \item The number of integer array elements in the tracking arrays $\mathcal{P}_{15}$ \item The number of real array elements in the tracking arrays $\mathcal{P}_{16}$ \end{itemize} \eject