\subsection{The \moc{mccgt} dependent records on a \dir{tracking} directory}\label{sect:mccgtrackingdir} When the \moc{MCCGT:} module is used ($\mathsf{CDOOR}$={\tt 'MCCG'}), an additional state vector named {\tt MCCG-STATE} is set in \moc{EXCELT:} data structure. The components $\mathcal{M}^{t}_{i}$ of {\tt MCCG-STATE} are: \begin{itemize} \item $\mathcal{M}^{t}_{1}$: ({\tt LCACT}) The polar quadrature type used with the method of characteristics \begin{displaymath} \mathcal{M}^{t}_{1} = \left\{ \begin{array}{rl} 0 & \textrm{Gauss-Legendre} \\ 1 & \textrm{CACTUS type 1} \\ 2 & \textrm{CACTUS type 2} \\ 3 & \textrm{McDaniel} \\ 4 & \textrm{McDaniel with $P_1$ constraint} \\ 5 & \textrm{Gauss optimized.} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{2}$: ({\tt NMU}) The order of the polar quadrature. \item $\mathcal{M}^{t}_{3}$: ({\tt KRYL}) GMRES acceleration switch: \begin{displaymath} \mathcal{M}^{t}_{3} = \left\{ \begin{array}{rl} 0 & \textrm{free inner iterations} \\ \ge 1 & \textrm{GMRES$(\mathcal{M}^{t}_{3})$ acceleration of inner iterations} \\ \le 1 & \textrm{Bi-CGSTAB acceleration of inner iterations} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{4}$: ({\tt IDIFC}) Type of solution operator: \begin{displaymath} \mathcal{M}^{t}_{4} = \left\{ \begin{array}{rl} 0 & \textrm{transport flux solution selected} \\ 1 & \textrm{CDD diffusion flux solution selected (no inner iterations are performed} \\ & \textrm{in this case, only an ACA resolution is performed)} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{5}$: ({\tt NMAX}) The maximum number of elements in a single track. \item $\mathcal{M}^{t}_{6}$: ({\tt LMCU}) The dimension of the connection matrix {\tt MCU}. \item $\mathcal{M}^{t}_{7}$: ({\tt IACC}) ACA preconditioning switch: \begin{displaymath} \mathcal{M}^{t}_{7} = \left\{ \begin{array}{rl} 0 & \textrm{no ACA preconditioning} \\ \ge 1 & \textrm{ACA preconditioning of inner/multigroup iterations} \end{array} \right. \end{displaymath} If the number of inner iterations is set to 1, ACA is used as a rebalancing technique for multigroup iterations and $\mathcal{M}^{t}_{7}$ is the maximum number of iterations allowed to solve the ACA system. \item $\mathcal{M}^{t}_{8}$: ({\tt ISCR}) SCR preconditioning switch: \begin{displaymath} \mathcal{M}^{t}_{8} = \left\{ \begin{array}{rl} 0 & \textrm{no SCR preconditioning} \\ \ge 1 & \textrm{SCR preconditioning of inner/multigroup iterations} \end{array} \right. \end{displaymath} If the number of inner iterations is set to 1, SCR is used as a rebalancing technique for multigroup iterations and $\mathcal{M}^{t}_{8}$ is the maximum number of iterations allowed to solve the SCR system. \item $\mathcal{M}^{t}_{9}$: ({\tt LPS}) The dimension of the surface-to-region collision probabilities array if SCR is used. \item $\mathcal{M}^{t}_{10}$: ({\tt ILU}) The type of preconditioning for the resolution with BICGSTAB of the ACA corrective system if ACA is used: \begin{displaymath} \mathcal{M}^{t}_{10} = \left\{ \begin{array}{rl} 0 & \textrm{no preconditioning} \\ 1 & \textrm{diagonal preconditioning} \\ \ge 2 & \textrm{ILU0 preconditioning} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{11}$: ({\tt ILEXA}) Flag to force the usage of exact exponentials for preconditioner calculation: \begin{displaymath} \mathcal{M}^{t}_{11} = \left\{ \begin{array}{rl} 0 & \textrm{not forced} \\ 1 & \textrm{forced} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{12}$: ({\tt ILEXF}) Flag to force the usage of exact exponentials for flux calculation: \begin{displaymath} \mathcal{M}^{t}_{12} = \left\{ \begin{array}{rl} 0 & \textrm{not forced} \\ 1 & \textrm{forced} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{13}$: ({\tt MAXI}) Maximum number of inner iterations. \item $\mathcal{M}^{t}_{14}$: ({\tt LTMT}) Flag for the usage of a tracking merging technique while building the ACA matrices in order to obtain a two-step ACA acceleration: \begin{displaymath} \mathcal{M}^{t}_{14} = \left\{ \begin{array}{rl} 0 & \textrm{no tracking merging} \\ 1 & \textrm{tracking merging} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{15}$: ({\tt STIS}) Flag for the flux integration strategy by the characteristics method: \begin{displaymath} \mathcal{M}^{t}_{15} = \left\{ \begin{array}{rl} 0 & \textrm{direct approach with asymptotical treatment} \\ 1 & \textrm{``Source term isolation'' approach: optimized strategy with asymptotical treatment} \\ -1 & \textrm{"MOCC/MCI"-like approach: optimized strategy without asymptotical treatment} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{16}$: ({\tt NPJJM}) Effective number of angular mode-to-mode self-collision probabilities to be calculated per group and region if $\mathcal{M}^{t}_{15}=1$ e.g. \begin{center} \begin{tabular}{|c|c|c|} anisotropy & 2D & 3D \\ \hline $P_0$ & 1 & 1 \\ $P_1$ & 4 & 7 \\ $P_2$ & 13 & 27 \\ $P_3$ & 31 & 76 \\ \hline \end{tabular} \end{center} \item $\mathcal{M}^{t}_{17}$: ({\tt LMCU0}) Effective number of non-diagonal elements to store for the ILU0 decomposition for ACA preconditioning. \item $\mathcal{M}^{t}_{18}$: ({\tt IFORW}) Flag to set the solution type for the ACA and characteristics system: \begin{displaymath} \mathcal{M}^{t}_{18} = \left\{ \begin{array}{rl} 0 & \textrm{direct solution} \\ 1 & \textrm{adjoint solution} \end{array} \right. \end{displaymath} \item $\mathcal{M}^{t}_{19}$: ({\tt NFUNL}) Number of spherical harmonics components used to expand the flux and the sources. \item $\mathcal{M}^{t}_{20}$: ({\tt NLIN}) Number of polynomial components used to expand the flux and the sources in space. \end{itemize} The following records will also be present on the main level of a \dir{tracking} directory. %\rotatebox[origin=c]{90}{ \begin{DescriptionEnregistrement}{The \moc{MCCGT:} records in \dir{tracking}}{8.0cm} \IntEnr {MCCG-STATE\blank{2}}{$40$} {Vector describing the various parameters associated with this data structure $\mathcal{M}^{t}_{i}$, as defined in \Sect{mccgtrackingdir}.} \RealEnr {REAL-PARAM\blank{2}}{$4$}{} {Real parameters $\mathcal{R}_{i}$ for the MCCG tracking.} \RealEnr {XMU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{2}$}{} {Inverse of the polar quadrature sines.} \RealEnr {ZMU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{2}$}{} {Cosines of the polar quadrature set.} \RealEnr {WZMU\$MCCG\blank{3}}{$\mathcal{M}^{t}_{2}$}{} {Weights of the polar quadrature set.} \OptIntEnr {PI\$MCCG\blank{5}}{$N_{\rm dim}$}{$\mathcal{S}^t_{15} > 0$} {Permutation array for ACA according to $i_\textrm{old}=\Pi(i_\textrm{new})$. The dimension of this array is $$N_{\rm dim}=\cases{\mathcal{S}^t_{1}+\mathcal{S}^t_{5} &if $\mathcal{S}^t_9=0$; \cr \mathcal{S}^t_1 &if $\mathcal{S}^t_9=1$. }$$} \OptIntEnr {INVPI\$MCCG\blank{2}}{$\mathcal{S}^t_{1}+\mathcal{S}^t_{5}$}{$\mathcal{S}^t_{15} > 0$} {Inverse permutation array for ACA $i_\textrm{new}=\Pi(i_\textrm{old})$} \IntEnr {NZON\$MCCG\blank{3}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$} {Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface.} \OptIntEnr {NZONA\$MCCG\blank{2}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{$\mathcal{S}^t_{15} > 0$} {Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface (-7 for void boundary conditions).} \RealEnr {V\$MCCG\blank{6}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{} {Volumes and numerical surfaces.} \OptRealEnr {VA\$MCCG\blank{5}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{$\mathcal{S}^t_{15} > 0$}{} {Renumbered Volumes and numerical surfaces.} \OptIntEnr {KM\$MCCG\blank{5}}{$N_{\rm dim}$}{$\mathcal{M}^{t}_{7}>0$} {Connection matrix for ACA.} \OptIntEnr {IM\$MCCG\blank{5}}{$N_{\rm dim}+1$}{$\mathcal{M}^{t}_{7}>0$} {Connection matrix for ACA.} \OptIntEnr {MCU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{6}$}{$\mathcal{M}^{t}_{7}>0$} {Connection matrix for ACA.} \OptIntEnr {JU\$MCCG\blank{5}}{$N_{\rm dim}$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{S}^t_{15} > 0$ \\ $\mathcal{M}^t_{3}\ge2$ \end{tabular}\right.$} {Used for ILU0 decomposition in the preconditioning of ACA system.} \OptIntEnr {IS\$MCCG\blank{5}}{$\mathcal{S}^t_{5}$}{$\mathcal{M}^t_{1}>0$} {Connection matrix for surface-to-volume probability in SCR.} \OptIntEnr {JS\$MCCG\blank{5}}{$\mathcal{M}^t_{7}$}{$\mathcal{M}^t_{1}>0$} {Connection matrix for surface-to-volume probability in SCR.} \IntEnr {ISGNR\$MCCG\blank{2}}{$8(\mathcal{S}^{t}_{6})^2$} {Signs for spherical harmonics on the 8 octant angular modes.} \OptIntEnr {KEYCUR\$MCCG\blank{1}}{$\mathcal{S}^t_5$}{$\mathcal{S}^t_{9}=1$} {Index for outgoing currents at the domain boundaries.} \IntEnr {KEYFLX\$ANIS\blank{1}}{$\mathcal{S}^t_1,\mathcal{M}^t_{20},\mathcal{M}^t_{19}$} {Location in unknown vector of averaged regional flux moments.} \OptIntEnr {KEYANI\$MCCG\blank{1}}{$(\mathcal{S}^{t}_{6})^2$}{$\mathcal{S}^t_9=1$} {Index for currents.} \OptIntEnr {PJJIND\$MCCG\blank{1}}{$2\mathcal{M}^{t}_{16}$}{$\mathcal{M}^t_{15}=1$} {Index of modes connection for non vanishing angular mode-to-mode self-collision probabilities} \OptIntEnr {IM0\$MCCG\blank{4}}{$N_{\rm dim}+1$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{M}^t_{7}>0$ \\ $\mathcal{M}^t_{3}=3$ \end{tabular}\right.$} {Connection matrix for non-diagonal elements of ILU0-ACA.} \OptIntEnr {MCU0\$MCCG\blank{3}}{$\mathcal{M}^{t}_{17}$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{M}^t_{7}>0$ \\ $\mathcal{M}^t_{3}=3$ \end{tabular}\right.$} {Connection matrix for non-diagonal elements of ILU0-ACA.} \end{DescriptionEnregistrement}%} \noindent with the real parameter $\mathcal{R}_{i}$, representing: \begin{itemize} \item $\mathcal{R}^{t}_{1}$: Convergence criterion on inner iterations. \item $\mathcal{R}^{t}_{2}$: Step characteristics selection criterion: \begin{displaymath} \mathcal{R}^{t}_{2} = \left\{ \begin{array}{rl} 0.0 & \textrm{step characteristics scheme} \\ >0.0 & \textrm{diamond differencing scheme.} \end{array} \right. \end{displaymath} \item $\mathcal{R}^{t}_{3}$: Track spacing in cm for 3D prismatic tracking. \item $\mathcal{R}^{t}_{4}$: Tracking symmetry factor for maximum track length calculation during the calculation of a 3D prismatic tracking. \end{itemize} The following records will also be present in the \namedir{PROJECTION} directory of a \dir{tracking} directory when a prismatic tracking is considered. \begin{DescriptionEnregistrement}{The \moc{MCCGT:} records in \namedir{PROJECTION}}{8.0cm} \OptRealEnr {ZCOORD\blank{6}}{$\mathcal{M}^{t}_{18}+1$}{$\mathcal{S}^{t}_{39} > 0$}{cm} {The $z-$directed mesh position} \OptIntEnr {IND2T3\blank{6}}{$N_{ind}$}{$\mathcal{S}^{t}_{39} > 0$} {Volume and surfaces index for a 3D prismatic geometry. Its size is $N_{ind}=(N_{2D}+1)(\mathcal{M}^{t}_{18}+2)$ where $N_{2D}$ is the number of volumes and surfaces in the initial 2D tracking} \OptDbleEnr {VNORF\blank{7}}{$N_{nor}$}{$\mathcal{S}^{t}_{39} > 0$}{} {Angular dependent normalization factors for a 3D prismatic extended tracking. Its size is $N_{nor}= 2 \mathcal{S}^{t}_{1} \mathcal{M}^{t}_{2} N_{\textrm{angl}}$ where $N_{\textrm{angl}}$ is the number of tracking angles in the initial 2D tracking} \end{DescriptionEnregistrement} \eject