\section{Contents of a \dir{macrolib} directory}\label{sect:macrolibdir} A \dir{macrolib} directory always contains the set of macroscopic multigroup cross sections associated with a set of mixtures. The structure of this directory, is quite different to that associated with an \dir{isotope} directory (see \Sect{isotopedir}). First, it is multi-level, namely, it contains sub-directories. Moreover instead of having one directory per mixture which contains the associated multigroup cross section, one will have one directory component per group containing multi-mixture information. Finally its contents will vary depending on the operator which was used to create it. Here for convenience we will define the variable $\mathcal{M}$ to identify the creation operator: \begin{displaymath} \mathcal{M} = \left\{ \begin{array}{ll} 0 & \textrm{if the directory is created by the \moc{MAC:} operator}\\ 1 & \textrm{if the directory is created by the \moc{LIB:} or \moc{EVO:} operator}\\ 2 & \textrm{if the directory is created by the \moc{EDI:} operator}\\ 3 & \textrm{if the directory is created by the \moc{OUT:} operator or by an interpolation operator} \end{array} \right. \end{displaymath} In the case where the \moc{LIB:} or \moc{EDI:} operator is used to create this directory, it is embedded as a subdirectory in a \dir{microlib} or an \dir{edition} directory. For the other cases, it appears on the root level of the \dds{macrolib} data structure. \subsection{State vector content for the \dir{macrolib} data structure}\label{sect:macrolibstate} The dimensioning parameters for the \dir{macrolib} data structure, which are stored in the state vector $\mathcal{S}^{M}$, represent: \begin{itemize} \item The number of energy groups ${G}=\mathcal{S}^{M}_{1}$ \item The number of mixtures $N_{m}=\mathcal{S}^{M}_{2}$ \item The order for the scattering anisotropy $L=\mathcal{S}^{M}_{3}$ ($L=1$ is an isotropic collision; $L=2$ is a linearly anisotropic collision, etc.) \item The maximum number of fissile isotopes in a mixture $N_{f}=\mathcal{S}^{M}_{4}$ \item The number of additional $\phi$--weighted editing cross sections $N_{e}=\mathcal{S}^{M}_{5}$ \item The transport correction option $I_{tr}=\mathcal{S}^{M}_{6}$ \begin{displaymath} I_{tr} = \left\{ \begin{array}{ll} 0 & \textrm{do not use a transport correction}\\ 1 & \textrm{use an APOLLO-type transport correction (micro-reversibility at all energies)}\\ 2 & \textrm{recover a transport correction from the cross-section library}\\ 4 & \textrm{use a leakage correction based on {\tt NTOT1} data.} \end{array} \right. \end{displaymath} \item The number of precursor groups for delayed neutron $N_{d}=\mathcal{S}^{M}_{7}$ \item The number of physical albedo $N_{A}=\mathcal{S}^{M}_{8}$ \item The type of leakage $I_{l}=\mathcal{S}^{M}_{9}$ \begin{displaymath} I_{l} = \left\{ \begin{array}{ll} 0 & \textrm{no diffusion/leakage coefficient available}\\ 1 & \textrm{isotropic diffusion/leakage coefficient available}\\ 2 & \textrm{anisotropic diffusion/leakage coefficient available.} \end{array} \right. \end{displaymath} \item The maximum Legendre order of the weighting functions $I_{w}=\mathcal{S}^{M}_{10}$ \begin{displaymath} I_{w} = \left\{ \begin{array}{ll} 0 & \textrm{use the flux as weighting function for all cross sections}\\ 1 & \textrm{use the fundamental current ${\cal J}$ as weighting function for scattering cross sections with}\\ & \textrm{order $\ge 1$ and compute both $\phi$-- and ${\cal J}$--weighted total cross sections.} \end{array} \right. \end{displaymath} \item The number of delta cross section sets $I_{\rm step}=\mathcal{S}^{M}_{11}$ used for generalized perturbation theory (GPT) or kinetics calculations: \begin{displaymath} I_{\rm step} = \left\{ \begin{array}{ll} 0 & \textrm{no delta cross section sets}\\ >0 & \textrm{number of delta cross section sets.} \end{array} \right. \end{displaymath} \item Discontinuity factor flag $I_{\rm df}=\mathcal{S}^{M}_{12}$: \begin{displaymath} I_{\rm df} = \left\{ \begin{array}{ll} 0 & \textrm{no discontinuity factor information}\\ 1 & \textrm{multigroup boundary current information is available}\\ 2 & \textrm{boundary flux information (see \Sect{macroADF}) is available}\\ 3 & \textrm{discontinuity factor information (see \Sect{macroADF}) is available}\\ 4 & \textrm{matrix ($G \times G$) discontinuity factor information (see \Sect{macroADF}) is available.} \end{array} \right. \end{displaymath} \item Adjoint macrolib flag $I_{\rm adj}=\mathcal{S}^{M}_{13}$: \begin{displaymath} I_{\rm adj} = \left\{ \begin{array}{ll} 0 & \textrm{direct macrolib}\\ 1 & \textrm{adjoint macrolib.} \end{array} \right. \end{displaymath} \item SPH-information $I_{\rm sph}=\mathcal{S}^{M}_{14}$: \begin{displaymath} I_{\rm sph} = \left\{ \begin{array}{ll} 0 & \textrm{no SPH information available}\\ 1 & \textrm{SPH information is available.} \end{array} \right. \end{displaymath} \item Type of weighting in {\tt EDI:} module $I_{\rm pro}=\mathcal{S}^{M}_{15}$: \begin{displaymath} I_{\rm pro} = \left\{ \begin{array}{ll} 0 & \textrm{use a flux weighting}\\ 1 & \textrm{use an adjoint--direct (a.k.a., product) flux weighting. Only available if $\mathcal{M}\ge 2$} \end{array} \right. \end{displaymath} \item Group form factor index $I_{\rm gff}=\mathcal{S}^{M}_{16}$: \begin{displaymath} I_{\rm gff} = \left\{ \begin{array}{ll} 0 & \textrm{no group form factor information}\\ >0 & \textrm{number of form factors per mixture and per energy group (see \Sect{macroGFF}).} \end{array} \right. \end{displaymath} \item Number of companion particles in coupled sets $I_{\rm part}=\mathcal{S}^{M}_{17}$: \begin{displaymath} I_{\rm part} = \left\{ \begin{array}{ll} 0 & \textrm{the macrolib doesn't include coupled sets}\\ >0 & \textrm{number of companion particles.} \end{array} \right. \end{displaymath} \end{itemize} \subsection{The main \dir{macrolib} directory}\label{sect:macrolibdirmain} The following records and sub-directories will be found on the first level of a \dir{macrolib} directory: \begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{macrolib}}{8.0cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {Signature of the \dir{macrolib} data structure ($\mathsf{SIGNA}=${\tt L\_MACROLIB\blank{2}}).} \IntEnr {STATE-VECTOR}{$40$} {Vector describing the various parameters associated with this data structure $\mathcal{S}^{M}_{i}$, as defined in \Sect{macrolibstate}.} \OptCharEnr {ADDXSNAME-P0}{$(N_{e})*8$}{$N_{e} \ge 1$} {Names of the additional $\phi$--weighted editing cross sections ($\mathsf{ADDXS}_k$). These names should not appear in Tables~\ref{tabl:tabnonlegendre} and \ref{tabl:tablegendre}.} \OptIntEnr {FISSIONINDEX}{$N_{m},N_{f}$}{$N_{f} \ge 1,\mathcal{M}=1$} {For each mixture $i$ contains the index of each fissile isotope $j$. The index is pointing to a component of record \moc{ISOTOPESUSED} or \moc{ISOTOPERNAME} of /microlib/.} \OptRealEnr {ENERGY\blank{6}}{$G+1$}{$\mathcal{M}\ge 1$}{eV} {Energy group limits $E_{g}$} \OptRealEnr {DELTAU\blank{6}}{$G$}{$\mathcal{M}\ge 1$}{} {Lethargy width of each group $U_{g}$} \OptRealEnr {ALBEDO\blank{6}}{$N_{A}, G$}{$N_{A}> 0$}{} {Multigroup and surface ordered physical albedos. The dimension is R$(N_{A},G,G)$ in case where matrix albedos are used.} \OptRealEnr {VOLUME\blank{6}}{$N_{m}$}{$\mathcal{M}\ge 2$}{cm$^{3}$~~} {Volume of region containing each mixture $V_{m}$} \OptRealEnr {MIXTURESDENS}{$N_{m}$}{$\mathcal{M}=1$}{g/cm$^{3}$~~} {Volumetric mass density of each mixture $\rho_{m}$} \OptRealEnr {FLUXDISAFACT}{$G$}{$\mathcal{M}=2$}{} {Ratio of the flux in the fuel to the flux in the cell $F_{g}$ after homogenization} \OptRealEnr {LAMBDA-D\blank{4}}{$N_{d},N_{f}$}{$N_{d}\ge 1$}{s$^{-1}$} {Radioactive decay constants of each delayed neutron precursor group, for each fissile isotope.} \OptRealEnr {BETA-D\blank{6}}{$N_{d},N_{f}$}{$N_{d}\ge 1$}{} {Delayed-neutron fraction for each delayed neutron precursor group, for each fissile isotope.} \OptRealEnr {K-EFFECTIVE\blank{1}}{$1$}{$N_{f} \ge 1$}{} {Effective multiplication constant $k_{\mathrm{eff}}$} \OptRealEnr {K-INFINITY\blank{2}}{$1$}{$N_{f} \ge 1$}{} {Infinite multiplication constant $k_{\infty}$} \OptRealEnr {B2\blank{2}B1HOM\blank{3}}{$1$}{$I_{l} \ge 1$}{cm$^{-2}$~~} {Homogeneous Buckling $B_{\mathrm{hom}}$} \OptRealEnr {B2\blank{2}HETE\blank{4}}{$3$}{$I_{l}=2$}{cm$^{-2}$} {Directional Buckling $B_{j}$} \OptRealEnr {TIMESTAMP\blank{3}}{$3$}{$\mathcal{M}=1$}{} {A vector $T_{j}$ containing three elements. The first element $T_{1}=t$ is the time in days, the second element $T_{2}=B$ is the burnup in MW day T$^{-1}$ and the third element $T_{3}=w$ is the irradiation in Kb$^{-1}$} \DirlEnr {GROUP\blank{7}}{$G$} {List of energy-group sub-directories. Each component of the list is a directory containing the reference macroscopic cross-section information associated with a specific secondary group.} \OptCharEnr {PARTICLE\blank{4}}{$*1$}{$I_{\rm part}\ge 1$} {Character name of the particle associated to the macrolib. Usual names for particles are {\tt N} (neutrons), {\tt G} (photons), {\tt B} (electrons), {\tt C} (positrons) and {\tt P} (protons).} \OptCharEnr {PARTICLE-NAM}{($I_{\rm part}+1$)$*1$}{$I_{\rm part}\ge 1$} {Character name associated to each particle.} \OptIntEnr {PARTICLE-NGR}{$I_{\rm part}+1$}{$I_{\rm part}\ge 1$} {Number of energy groups associated to each particle.} \OptRealEnr {PARTICLE-MC2}{$I_{\rm part}+1$}{$I_{\rm part}\ge 1$}{eV} {Rest energy associated to each particle.} \OptRealVar {\listedir{penergy}}{$G_i+1$}{$I_{\rm part}\ge 1$}{eV} {Set of arrays containing energy groups limits for a companion particle. The character name of each sub-directory is the concatenation of the character*1 name of the particle with ``{\tt ENERGY}''. For example, {\tt GENERGY} contains the energy mesh of secondary photons ($G_i+1$ values).} \OptDirlVar {\listedir{grpdir}}{$G$}{$I_{\rm part}\ge 1$} {List of energy-group sub-directories. Each component of the list is a directory containing scattering transition cross-section information associated with a specific secondary group. The directory \listedir{grpdir} name is the concatenation of {\tt GROUP-} with the character*6 name of the companion particle responsible for scattering transitions.} \OptDirlEnr {STEP\blank{8}}{$I_{\rm step}$}{$I_{\rm step}\ge 1$} {List of GPT or kinetics perturbation sub-directories. Each component of this list contains a single list of energy-group sub-directories following the \moc{GROUP} specification. This \moc{GROUP} list contains variations or derivatives of the reference cross-section set.} \OptDirEnr {ADF\blank{9}}{$I_{\rm df} \ge 1$} {ADF--related information as presented in \Sect{macroADF}.} \OptDirEnr {GFF\blank{9}}{$I_{\rm gff} \ge 1$} {Group form factor information as presented in \Sect{macroGFF}.} \OptDirEnr {SPH\blank{9}}{$I_{\rm sph} = 1$} {SPH--related input data as presented in \Sect{macroSPH}.} \end{DescriptionEnregistrement} \subsection{The group sub-directory \moc{GROUP} in \dir{macrolib}}\label{sect:macrolibdirgroup} Each component of the list \moc{GROUP} is a directory containing cross-section information corresponding to a single energy group. Inside each groupwise directory, the following records associated with vectorial cross sections will be found: \begin{DescriptionEnregistrement}{Vectorial cross section records and directories in \moc{GROUP}}{7.0cm} \label{tabl:tabnonlegendre} \RealEnr {NTOT0\blank{7}}{$N_{m}$}{cm$^{-1}$} {The $\phi$--weighted total cross section $\Sigma_{0,m}^{g}$} \OptRealEnr {NTOT1\blank{7}}{$N_{m}$}{$\mathcal{M}=2; \ I_{w}\ge 1$}{cm$^{-1}$} {The ${\cal J}$--weighted total cross section $\Sigma_{1,m}^{g}$} \OptRealEnr {TRANC\blank{7}}{$N_{m}$}{$I_{tr}=2$}{cm$^{-1}$} {The transport correction $\Sigma_{tc,m}^{g}$} \RealEnr {FIXE\blank{8}}{$N_{m}$}{cm$^{-3}$s$^{-1}$} {Fixed sources $S_{m}^{g}$.} \OptRealEnr {NUSIGF\blank{6}}{$N_{m},N_{f}$}{$N_{f}\ge 1$}{cm$^{-1}$} {The product of $\Sigma_{f,m}^{g}$, the fission cross section with $\nu_{m}^{{\rm ss},g}$, the steady-state number of neutron produced per fission, $\nu\Sigma_{f,m}^{g}$} \OptRealEnr {CHI\blank{9}}{$N_{m},N_{f}$}{$N_{f}\ge 1$}{} {The steady-state energy spectrum of the neutron emitted by fission $\chi_{m}^{{\rm ss},g}$} \OptRealVar {\{nusid\}}{$N_{m},N_{f}$}{$N_{d}\ge 1$}{cm$^{-1}$} {The product of $\Sigma_{f,m}^{g}$, the fission cross section with $\nu_{m,\ell}^{{\rm D},g}$, the averaged number of fission--emitted delayed neutron produced in the precursor group $\ell$, $\nu\Sigma_{f,m,\ell}^{{\rm D},g}$} \OptRealVar {\{chid\}}{$N_{m},N_{f}$}{$N_{d}\ge 1$}{} {The energy spectrum of the fission--emitted delayed neutron in the precursor group $\ell$, $\chi_{m,\ell}^{{\rm D},g}$} \OptRealEnr {FLUX-INTG\blank{3}}{$N_{m}$}{$\mathcal{M}\ge 2$}{cm s$^{-1}$} {The volume-integrated flux $\Phi_{m}^{g}$} \OptRealEnr {FLUX-INTG-P1}{$N_{m}$}{$\mathcal{M}\ge 2; \ I_{w}\ge 1$}{cm s$^{-1}$} {The volume-integrated fundamental current ${\cal J}_{m}^{g}$} \OptRealEnr {COURX-INTG\blank{2}}{$N_{m}$}{$\mathcal{M}\ge 2; \ I_{\rm intcur}=1$}{cm s$^{-1}$} {The volume-integrated net current along the $X$-axis $J_{{\rm X},m}^{g}$. Only provided with SN and MOC discretizations.} \OptRealEnr {COURY-INTG\blank{2}}{$N_{m}$}{$\mathcal{M}\ge 2; \ I_{\rm intcur}=1$}{cm s$^{-1}$} {The volume-integrated net current along the $Y$-axis $J_{{\rm Y},m}^{g}$. Only provided with SN and MOC 2D and 3D discretizations.} \OptRealEnr {COURZ-INTG\blank{2}}{$N_{m}$}{$\mathcal{M}\ge 2; \ I_{\rm intcur}=1$}{cm s$^{-1}$} {The volume-integrated net current along the $Z$-axis $J_{{\rm Z},m}^{g}$ Only provided with SN and MOC 3D discretizations.} \OptRealEnr {NWAT0\blank{7}}{$N_{m}$}{$I_{\rm pro}=1$}{1} {The multigroup neutron adjoint flux spectrum $\phi_{m}^{*g}$} \OptRealEnr {NWAT1\blank{7}}{$N_{m}$}{$I_{w}\ge 1; \ I_{\rm pro}=1$}{1} {The multigroup fundamental adjoint current spectrum ${\cal J}_{m}^{*g}$} \RealEnr {OVERV\blank{7}}{$N_{m}$}{cm$^{-1}$s} {The average of the inverse neutron velocity \hbox{$<1/v>_{m}^g$}} \OptRealEnr {DIFF\blank{8}}{$N_{m}$}{$I_{l}=1$}{cm} {The isotropic diffusion coefficient $D_{m}^{g}$} \OptRealEnr {DIFFX\blank{7}}{$N_{m}$}{$I_{l}=2$}{cm} {The $x$-directed diffusion coefficient $D_{x,m}^{g}$} \OptRealEnr {DIFFY\blank{7}}{$N_{m}$}{$I_{l}=2$}{cm} {The $y$-directed diffusion coefficient $D_{y,m}^{g}$} \OptRealEnr {DIFFZ\blank{7}}{$N_{m}$}{$I_{l}=2$}{cm} {The $z$-directed diffusion coefficient $D_{z,m}^{g}$} \OptRealEnr {NSPH\blank{8}}{$N_{m}$}{$\mathcal{M}=2$}{1} {SPH equivalence factors $\mu_{m}^{g}$. By default, these factors are set equal to 1.0. Otherwise, all the cross sections, diffusion coefficients and integrated fluxes stored on the {\sc macrolib} are SPH--corrected.} \OptRealEnr {H-FACTOR\blank{4}}{$N_{m}$}{$\mathcal{M}=2$}{eV cm$^{-1}$} {Energy production coefficients $H_{m}^{g}$ (product of each macroscopic cross section times the energy emitted by this reaction).} \OptRealEnr {ESTOPW\blank{6}}{$N_{m},2$}{*}{MeV cm$^{-1}$} {Initial and final stopping power. Information provided if {\tt PARTICLE}$=${\tt B}, {\tt C} or {\tt P}.} \OptRealEnr {EMOMTR\blank{6}}{$N_{m}$}{*}{cm$^{-1}$} {Restricted momentum transfer cross section. Information provided only if {\tt PARTICLE}$=${\tt B}, {\tt C} or {\tt P}.} \OptRealEnr {C-FACTOR\blank{4}}{$N_{m}$}{*}{electron cm$^{-1}$} {Charge deposition cross section. Information provided if {\tt PARTICLE}$=${\tt B}, {\tt C} or {\tt P}.} \OptRealVar {\listedir{xsname}}{$N_{m}$}{$N_{e}\ge 1$}{cm$^{-1}$} {Set of cross section records specified by $\mathsf{ADDXS}_{k}$} \end{DescriptionEnregistrement} The set of delayed neutron records {\sl \{nusid\}} and {\sl \{chid\}} will be composed, using the following FORTRAN instructions, as $\mathsf{NUSID}$ and $\mathsf{CHID}$, respectively \begin{displaymath} \mathtt{WRITE(}\mathsf{NUSID}\mathtt{,'(A6,I2.2)')} \ \mathtt{'NUSIGF'},ell \end{displaymath} \begin{displaymath} \mathtt{WRITE(}\mathsf{CHID}\mathtt{,'(A3,I2.2)')} \ \mathtt{'CHI'},ell \end{displaymath} for $1\leq ell \leq N_d$. For example, in the case where two group cross sections are considered ($N_d=2$), the following records would be generated: \begin{DescriptionEnregistrement}{Example of delayed--neutron records in \moc{GROUP}}{8.0cm} \OptRealEnr {NUSIGF01\blank{4}}{$N_{m},N_{f}$}{$N_{d}\ge 1$}{cm$^{-1}$} {The product of $\Sigma_{f,m}^{g}$, the fission cross section with $\nu_{m,1}^{{\rm D},g}$, the averaged number of fission--emitted delayed neutron produced in the precursor group $\ell=1$, $\nu\Sigma_{f,m,1}^{{\rm D},g}$} \OptRealEnr {CHI01\blank{7}}{$N_{m},N_{f}$}{$N_{d}\ge 1$}{} {The energy spectrum of the fission--emitted delayed neutron in the precursor group $\ell=1$, $\chi_{m,1}^{{\rm D},g}$} \OptRealEnr {NUSIGF02\blank{4}}{$N_{m},N_{f}$}{$N_{d}\ge 2$}{cm$^{-1}$~~} {The product of $\Sigma_{f,m}^{g}$, the fission cross section with $\nu_{m,2}^{{\rm D},g}$, the averaged number of fission--emitted delayed neutron produced in the precursor group $\ell=2$, $\nu\Sigma_{f,m,2}^{{\rm D},g}$} \OptRealEnr {CHI02\blank{7}}{$N_{m},N_{f}$}{$N_{d}\ge 2$}{} {The energy spectrum of the fission--emitted delayed neutron in the precursor group $\ell=2$, $\chi_{m,2}^{{\rm D},g}$} \end{DescriptionEnregistrement} \vskip 0.2cm In the case where $N_{e}=3$ and \begin{displaymath} \mathsf{ADDXS}_{k} = \left\{ \begin{array}{lll} \mathtt{NG} & \textrm{for} & k=1\\ \mathtt{N2N}& \textrm{for} & k=2\\ \mathtt{NFTOT}& \textrm{for} & k=3 \end{array} \right. \end{displaymath} the following reactions will be available in the data structure described in Table~\ref{tabl:tabnonlegendre}: \begin{DescriptionEnregistrement}{Additional cross section records}{7.0cm} \RealEnr {NG\blank{10}}{$N_{m}$}{cm$^{-1}$} {The neutron capture cross section $\Sigma_{{\rm c},m}^{g}$} \RealEnr {N2N\blank{9}}{$N_{m}$}{cm$^{-1}$} {The cross section $\Sigma_{{\rm (n,2n)},m}^{g}$ for the reaction $^{A}_{Z}X+n \to ^{A-1}_{Z}X+2n$} \RealEnr {NFTOT\blank{7}}{$N_{m}$}{cm$^{-1}$} {The neutron fission cross section $\Sigma_{{\rm f},m}^{g}$} \end{DescriptionEnregistrement} The information associated with the multigroup scattering matrix, which gives the probability for a neutron in group $h$ to appear in group $g$ after a collision with an isotope in mixture $m$ is represented by the form: \begin{displaymath} \Sigma_{s,m}^{h\to g}(\vec{\Omega}\to\vec{\Omega}') =\sum_{l=0}^{L}{{2l+1}\over{4\pi}} P_{l}(\vec{\Omega}\cdot\vec{\Omega}') \Sigma_{l,m}^{h\to g} =\sum_{l=0}^{L}\sum_{m=-l}^{l} Y_{l}^{m}(\vec{\Omega})Y_{l}^{m}(\vec{\Omega}')\Sigma_{l,m}^{h\to g} \end{displaymath} using a series expansion to order $L$ in spherical harmonic. Assuming that the spherical harmonic are orthonormalized, we can define $\Sigma_{l,m}^{h\to g}$ in terms of $\Sigma_{s,m}^{h\to g}(\vec{\Omega}\to\vec{\Omega}')$ using the following integral: \begin{displaymath} \Sigma_{l,m}^{h\to g} =\int_{4\pi}d^{2}\Omega \ \Sigma_{s,m}^{h\to g}(\vec{\Omega}\to\vec{\Omega}') P_{l}(\vec{\Omega}\cdot\vec{\Omega}') \end{displaymath} Note that this definition of $\Sigma_{l,m}^{h\to g}$ is not unique and some authors include the factor $2l+1$ directly in the different angular moments of the scattering cross section. \vskip 0.2cm Here instead of storing the $G\times M$ matrix $\Sigma_{l,m}^{h\to g}$ associated with each final energy group $g$, a vector which contains a compress form of the scattering matrix will be considered. We will first define three integer vectors $n_{l,m}^{g}$, $h_{l,m}^{g}$ and $p_{l,m}^{g}$ for order $l$ in the scattering cross section, final energy group $g$ and mixture $m$. They will contain respectively the number of initial energy groups $h$ for which the scattering cross section to group $g$ does not vanish, the maximum energy group index for which scattering to the final group $g$ does not vanishes and the position in the compressed scattering vector where the data associated with mixture $m$ for each energy group $g$ can be found. Here $p_{l,m}^{g}$ is directly related to $n_{l,m}^{g}$ by \begin{displaymath} p_{l,m}^{g}=1+\sum_{k=1}^{m-1} n_{l,k}^{g} \end{displaymath} \begin{figure}[htbp] \begin{center} \epsfxsize=8cm \centerline{ \epsffile{scat.eps}} \parbox{14cm}{\caption{Numbering of scattering elements in {\tt 'SCAT'} matrices.}\label{fig:scat}} \end{center} \end{figure} Now consider the following 4 groups isotropic scattering cross section matrix associated with mixture 1 and 2 ($N_{m}=2$) respectively: \begin{center} \begin{tabular}{c||cccc|cccc} &\multicolumn{4}{l|}{Mixture $m=1$} & \multicolumn{4}{l}{Mixture $m=2$} \\ $\sigma_{0,m}^{h\to g}$ &$g=1$ & $g=2$ & $g=3$ & $g=4$ & $g=1$ & $g=2$ & $g=3$ & $g=4$ \\ \hline\hline $h=1$ & $a_{1}$ & $a_{2}$ & 0 & 0 & $b_{1}$ & $b_{2}$ & 0 & 0 \\ $h=2$ & 0 & $a_{3}$ & $a_{4}$ & $a_{5}$ & $b_{3}$ & $b_{4}$ & $b_{5}$ & 0 \\ $h=3$ & 0 & $a_{6}$ & $a_{7}$ & 0 & 0 & $b_{6}$ & $b_{7}$ & 0 \\ $h=4$ & 0 & $a_{8}$ & 0 & $a_{9}$ & 0 & 0 & $b_{8}$ & $b_{9}$ \\ \hline\hline $h_{0,m}^{g}$ & 1 & 4 & 3 & 4 & 2 & 3 & 4 & 4 \\ $n_{0,m}^{g}$ & 1 & 4 & 2 & 3 & 2 & 3 & 3 & 1 \\ $p_{0,m}^{g}$ & 1 & 1 & 1 & 1 & 2 & 5 & 3 & 4 \\ \end{tabular} \end{center} \noindent The compressed scattering matrix will then take the following form for each final group $g$: \begin{eqnarray*} \Sigma_{0,k,c}^{1}&=&\left(a_{1},b_{3},b_{1}\right) \\ \Sigma_{0,k,c}^{2}&=&\left(a_{8},a_{6},a_{3},a_{2},b_{6},b_{4},b_{2}\right) \\ \Sigma_{0,k,c}^{3}&=&\left(a_{7},a_{4},b_{8},b_{7},b_{5}\right) \\ \Sigma_{0,k,c}^{4}&=&\left(a_{9},0,a_{5},b_{9}\right) \end{eqnarray*} Finally, we will also save the total scattering cross section vector of order $l$ which is defined as \begin{displaymath} \Sigma_{l,m,s}^{g}=\sum_{h=1}^{G} \Sigma_{l,m}^{g\to h} \end{displaymath} and the diagonal element of the scattering matrix: \begin{displaymath} \Sigma_{l,m,w}^{g}=\Sigma_{l,m}^{g\to g} \end{displaymath} In the case where only the order $l=0$ and $l=1$ moment of scattering cross section are non vanishing (isotropic and linearly anisotropic scattering) the following records can be found on the group directory. \begin{DescriptionEnregistrement}{Scattering cross section records in \moc{GROUP}}{7.0cm} \label{tabl:tablegendre} \RealEnr {SIGS00\blank{6}}{$N_{m}$}{cm$^{-1}$} {The isotropic component ($l=0$) of the total scattering cross section $\Sigma_{0,m,s}^{g}$} \RealEnr {SIGW00\blank{6}}{$N_{m}$}{cm$^{-1}$} {The isotropic component ($l=0$) of the within group scattering cross section $\Sigma_{0,m,w}^{g}$} \IntEnr {IJJS00\blank{6}}{$N_{m}$} {Highest energy group number for which the isotropic component of the scattering cross section to group $g$ does not vanish, $h_{0,m}^{g}$} \IntEnr {NJJS00\blank{6}}{$N_{m}$} {Number of energy groups for which the isotropic component of the scattering cross section to group $g$ does not vanish, $n_{0,m}^{g}$} \IntEnr {IPOS00\blank{6}}{$N_{m}$} {Location in the isotropic compressed scattering matrix where information associated with mixture $m$ begins $p_{0,m}^{g}$} \RealEnr {SCAT00\blank{6}}{$\sum_{m=1}^{N_{m}} n_{0,m}^{g}$}{cm$^{-1}$} {Compressed isotropic component of the scattering matrix $\Sigma_{0,k,c}^{g}$} \OptRealEnr {SIGS01\blank{6}}{$N_{m}$}{$L\ge 1$}{cm$^{-1}$} {The linearly anisotropic component of the total scattering cross section $\Sigma_{1,m,s}^{g}$} \OptRealEnr {SIGW01\blank{6}}{$N_{m}$}{$L\ge 1$}{cm$^{-1}$} {The linearly anisotropic component of the within group scattering cross section $\Sigma_{1,m,w}^{g}$} \OptIntEnr {IJJS01\blank{6}}{$N_{m}$}{$L\ge 1$} {Highest energy group number for which the linearly anisotropic component of the scattering cross section to group $g$ does not vanish, $h_{1,m}^{g}$} \OptIntEnr {NJJS01\blank{6}}{$N_{m}$}{$L\ge 1$} {Number of energy groups for which the linearly anisotropic component of the scattering cross section to group $g$ does not vanish, $n_{1,m}^{g}$} \OptIntEnr {IPOS01\blank{6}}{$N_{m}$}{$L\ge 1$} {Location in the linearly anisotropic compressed scattering matrix where information associated with mixture $m$ begins $p_{1,m}^{g}$} \OptRealEnr {SCAT01\blank{6}}{$\sum_{m=1}^{N_{m}} n_{1,m}^{g}$}{$L\ge 1$}{cm$^{-1}$} {Compressed linearly anisotropic component of the scattering matrix $\Sigma_{1,k,c}^{g}$} \end{DescriptionEnregistrement} \subsection{The \moc{/ADF/} sub-directory in \dir{macrolib}}\label{sect:macroADF} Sub-directory containing boundary-related edition information. This information can be boundary fluxes, discontinuity factors or assembly discontinuity factors (ADF). Boundary fluxes can be used to compute discontinuity factors or to perform Selengut-type normalization with the {\sl superhomog\'en\'eisation} (SPH) method. \begin{DescriptionEnregistrement}{Records in the \moc{/ADF/} sub-directory}{7.5cm} \OptIntEnr {NTYPE\blank{7}}{$1$}{$I_{\rm df} \ge 2$} {Number of ADF-type boundary edits.} \OptCharEnr {HADF\blank{8}}{({\tt NTYPE})$*8$}{$I_{\rm df} \ge 2$} {Name of each ADF-type boundary flux or discontinuity factor edit. Any name can be used, but some names are standard. Standard names are: $=$ \moc{FD\_C}: corner flux edition; $=$ \moc{FD\_B}: surface (assembly gap) flux edition; $=$ \moc{FD\_H}: row flux edition (these are the first row of surrounding cells in the assembly).} \OptRealEnr {ALBS00\blank{6}}{$G,2$}{$I_{\rm df} = 1$}{} {Multigroup boundary currents $J^{g}_{\rm out}$ and $J^{g}_{\rm in}$. These values correspond to surfaces where a \moc{VOID} or \moc{ALBE} boundary condition is set in DRAGON.} \OptRealEnr {AVG\_FLUX\blank{5}}{$N_{m},G$}{$I_{\rm df} = 2$}{} {Averaged fluxes in the complete assembly. Used as denominator to compute the ADF in an homogeneous assembly.} \OptRealVar {\listedir{type}}{$N_{m},G$}{$I_{\rm df} = 2,\, 3$}{} {Averaged surfacic fluxes ($I_{\rm df} = 2$) or discontinuity factors ($I_{\rm df} = 3$) in a material mixture. Name {\sl type} is a component of {\tt HADF} array.} \OptRealVar {\listedir{type}}{$N_{m},G,G$}{$I_{\rm df} = 4$}{} {Matrix discontinuity factors in a material mixture. Name {\sl type} is a component of {\tt HADF} array.} \end{DescriptionEnregistrement} \subsection{The \moc{/GFF/} sub-directory in \dir{macrolib}}\label{sect:macroGFF} Sub-directory containing group form factor information. This information can be used to perform {\sl fine power reconstruction} over a fuel assembly. \begin{DescriptionEnregistrement}{Records in the \moc{/GFF/} sub-directory}{7.5cm} \DirEnr {GFF-GEOM\blank{4}} {Macro--geometry directory. This geometry corresponds to an unfolded fuel assembly and is compatible for a discretization with TRIVAC. This directory follows the specification presented in \Sect{geometrydirmain}.} \RealEnr {VOLUME\blank{6}}{$N_{m},I_{\rm gff}$}{cm$^{3}$} {Volumes of homogenized cells $V_{m}$} \RealEnr {NWT0\blank{8}}{$N_{m},I_{\rm gff},G$}{s$^{-1}$cm$^{-2}$} {The multigroup neutron flux spectrum $\phi_{w}^{g}$} \RealEnr {H-FACTOR\blank{4}}{$N_{m},I_{\rm gff},G$}{eV cm$^{-1}$} {Energy production coefficients $H_{m}^{g}$ (product of each macroscopic cross section times the energy emitted by this reaction).} \RealEnr {NFTOT\blank{7}}{$N_{m},I_{\rm gff},G$}{cm$^{-1}$} {The neutron fission cross section $\Sigma_{{\rm f},m}^{g}$} \IntEnr {FINF\_NUMBER\blank{1}}{$N_{\rm ifx}$} {Array containing the $N_{\rm ifx}$ $ifx$ indices used by the user every time the multicompo were ``enriched" with different options.} \RealEnr {\listedir{FINF}}{$N_{m},I_{\rm gff},G$}{s$^{-1}$cm$^{-2}$} {The diffusion multigroup neutron flux spectrum in an infinite domain $\psi_{m,p}^{d,\infty}$. See \moc{NAP:} module description in IGE344 user guide for details.} \end{DescriptionEnregistrement} The set of diffusion multigroup neutron flux spectrum records \listedir{FINF} will be composed, using the following FORTRAN instructions as $\mathsf{HVECT}$, \begin{displaymath} \mathtt{WRITE(}\mathsf{HVECT}\mathtt{,'(5HFINF\_,I3.3)')} \ \mathtt{'ifx'} \end{displaymath} where {\tt ifx} is a value chosen by the user (default value is 0). A different value can be chosen every time the multicompo are ``enriched" with different options (homogeneous/heterogeneous, tracking options, etc.). \clearpage \subsection{The \moc{/SPH/} sub-directory in \dir{macrolib}}\label{sect:macroSPH} The first level of the macrolib directory may contains a {\sl superhomog\'en\'eisation} (SPH) sub-directory \moc{/SPH/} containing input data: \begin{DescriptionEnregistrement}{Records in the \moc{/SPH/} sub-directory}{7.5cm} \IntEnr {STATE-VECTOR}{$40$} {Vector describing the various parameters associated with this data structure $\mathcal{S}^{\rm sph}_{i}$.} \OptCharEnr {SPH\$TRK\blank{5}}{$*12$}{$\mathcal{S}^{\rm sph}_{1}\ge 2$} {Name of the flux solution door.} \OptRealEnr {SPH-EPSILON\blank{1}}{$1$}{$\mathcal{S}^{\rm sph}_{1}\ge 2$}{1} {Convergence criterion for stopping the SPH iterations.} \end{DescriptionEnregistrement} The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}^{\rm sph}$, represent values related to the last editing step: \begin{itemize} \item Type of SPH equivalence factors: $I_{\rm type}=\mathcal{S}^{\rm sph}_{1}$ \begin{displaymath} I_{\rm type} = \left\{ \begin{array}{ll} 0 & \textrm{no SPH correction;} \\ 1 & \textrm{the SPH factors are read from LCM;} \\ 2 & \textrm{homogeneous macro-calculation (non-iterative procedure or H\'ebert-Benoist} \\ & \textrm{SPH-5 procedure);} \\ 3 & \textrm{any type of $P_{ij}$ macro-calculation;} \\ 4 & \textrm{any type of diffusion, $S_n$, $P_n$ or $SP_n$ macro-calculation.} \end{array} \right. \end{displaymath} \item Type of SPH equivalence normalization $I_{\rm norm}=\mathcal{S}^{\rm sph}_{2}$ \begin{displaymath} I_{\rm norm} = \left\{ \begin{array}{ll} <0 & \textrm{asymptotic normalization with respect to homoheneous mixture} -I_{\rm norm}; \\ 1 & \textrm{average flux normalization;} \\ 2 & \textrm{Selengut normalization using {\tt ALBS00} information;} \\ 3 & \textrm{Selengut normalization using {\tt FD\_B} boundary fluxes;} \\ 4 & \textrm{Generalized Selengut normalization (EDF-type);} \\ 5 & \textrm{Selengut normalization with surface leakage;} \\ 6 & \textrm{Selengut normalization with water gap normalization;} \\ 7 & \textrm{average flux normalization in fissile zones.} \end{array} \right. \end{displaymath} \item The maximum number of SPH iterations $\mathcal{S}^{\rm sph}_{3}$ \item The acceptable number of SPH iterations with an increase in convergence error before aborting $\mathcal{S}^{\rm sph}_{4}$ \item Flag for forcing the production of a macrolib or microlib at LHS $I_{\rm lhs} = \mathcal{S}^{\rm sph}_{5}$ \begin{displaymath} I_{\rm lhs} = \left\{ \begin{array}{ll} 0 & \textrm{produce an object of the type of the RHS;} \\ 1 & \textrm{produce an edition object;} \\ 2 & \textrm{produce a microlib;} \\ 3 & \textrm{produce a macrolib.} \end{array} \right. \end{displaymath} \item Type of SPH factors $I_{\rm imc} = \mathcal{S}^{\rm sph}_{6}$ \begin{displaymath} I_{\rm imc} = \left\{ \begin{array}{ll} 1 & \textrm{factors compatible with diffusion theory, $P_n$ and $SP_n$ equations} \\ 2 & \textrm{factors compatible with other types of transport-theory macro-calculations} \\ 3 & \textrm{factors compatible with $P_{ij}$ macro-calculations and Bell acceleration.} \\ \end{array} \right. \end{displaymath} \item The first group index where the equivalence process is applied $\mathcal{S}^{\rm sph}_{7}$ \item The maximum group index where the equivalence process is applied $\mathcal{S}^{\rm sph}_{8}$ \end{itemize} \subsection{Delayed neutron information} We will present space-time kinetics equations in the context of the diffusion approximation (i.e. using the Fick law) and equations used in a lattice code to produce condensed and homogenized information. These equations will be useful to understand the information written in the {\sc macrolib} specification. Similar expressions can be obtained in transport theory. Note that delayed neutron information $\beta_\ell$ and $\Lambda$ can also be computed at the scale of the complete reactor provided that bilinear direct--adjoint condensation and homogenization relations are used. \vskip 0.2cm The continuous-energy space-time diffusion equation is written: \begin{eqnarray} \nonumber {\partial\over \partial t}\left[ {1 \over v(E)} \ \phi(\vec r,E,t)\right] &=& \sum_j \chi_j^{\rm pr}(E)\int_0^\infty dE' \ \nu_j^{\rm pr}(\vec r,E',t)\Sigma_{{\rm f},j}(\vec r,E',t) \phi(\vec r,E',t)\\ \nonumber &+&\sum_j\sum_\ell\chi_{\ell,j}^{\rm D}(E)\lambda_\ell c_{\ell,j}(\vec r,t) + \nabla \cdot D(\vec r,E,t) \nabla\phi(\vec r,E,t)\\ &-& \Sigma(\vec r,E,t) \phi(\vec r,E,t) + \int_0^\infty dE' \ \Sigma_{\rm s0}(\vec r,E \leftarrow E',t) \phi(\vec r,E',t) \label{eq:eq1} \end{eqnarray} \noindent together with the set of $N_d$ precursor equations: \begin{equation} {\partial c_{\ell,j}(\vec r,t) \over \partial t}=\int_0^\infty dE \ \nu_{\ell,j}^{\rm D}(\vec r,E,t) \Sigma_{{\rm f},j}(\vec r,E,t) \phi(\vec r,E,t)-\lambda_\ell c_{\ell,j}(\vec r,t) \ \ ; \ \ \ \ell=1,N_d \label{eq:eq2} \end{equation} \noindent where \begin{description} \item [$\phi(\vec r,E,t)$=] neutron flux \item [$\chi_j^{\rm pr}(E)$=] prompt neutron spectrum for a fission of isotope $j$ \item [$\nu_j^{\rm pr}(\vec r,E,t)$=] number of prompt neutrons for a fission of isotope $j$ \item [$\Sigma_{{\rm f},j}(\vec r,E,t)$=] macroscopic fission cross section for isotope $j$ \item [$\chi_{\ell,j}^{\rm D}(E)$=] neutron spectra for delayed neutrons emitted by precursor group $\ell$ due to a fission of isotope $j$ \item [$\lambda_\ell$=] radioactive decay constant for precursor group $\ell$. This constant is assumed to be independent of the fissionable isotope $j$. \item [$c_{\ell,j}(\vec r,t)$=] concentration of the $\ell$--th precursor for a fission of isotope $j$ \item [$D(\vec r,E,t)$=] diffusion coefficient \item [$\Sigma(\vec r,E,t)$=] macroscopic total cross section \item [$\Sigma_{\rm s0}(\vec r,E \leftarrow E',t)$=] macroscopic scattering cross section \item [$\nu_{\ell,j}^{\rm D}(\vec r,E,t)$=] number of delayed neutrons in precursor group $\ell$ for a fission of isotope $j$. \end{description} \vskip 0.2cm The neutron spectrum are normalized so that \begin{equation} \int_0^\infty dE \ \chi_j^{\rm ss}(E)=1 \end{equation} \noindent and \begin{equation} \int_0^\infty dE \ \chi_\ell^{\rm D}(E)=1 \ \ ; \ \ \ell=1,N_d \ \ \ . \end{equation} \vskip 0.2cm After condensation over energy, Eqs.~(\ref{eq:eq1}) and~(\ref{eq:eq2}) are written \begin{eqnarray} \nonumber <1/v>^g{\partial\over \partial t}\phi^g(\vec r,t) &=& \sum_j \chi_j^{{\rm pr},g} \left[1-\sum_\ell\beta_{\ell,j}\right]\sum_h \nu\Sigma_{{\rm f},j}^h(\vec r,t) \phi^h(\vec r,t)\\ \nonumber &+&\sum_j \sum_\ell\chi_{\ell,j}^{{\rm D},g}\lambda_\ell c_{\ell,j}(\vec r,t) + \nabla \cdot D^g(\vec r,t) \nabla\phi^g(\vec r,t)\\ &-& \Sigma^g(\vec r,t) \phi^g(\vec r,t) + \sum_h \Sigma_{\rm s0}^{g \leftarrow h}(\vec r,t) \phi^h(\vec r,t) \label{eq:eq7} \end{eqnarray} \noindent together with the set of $N_d$ precursor equations: \begin{equation} {\partial c_{\ell,j}(\vec r,t) \over \partial t}=\beta_{\ell,j} \sum_h \nu\Sigma_{{\rm f},j}^h(\vec r,t) \phi^h(\vec r,t)-\lambda_\ell c_{\ell,j}(\vec r,t) \ \ ; \ \ \ \ell=1,N_d \label{eq:eq8} \end{equation} \noindent where \begin{description} \item [$\nu\Sigma_{{\rm f},j}^h(\vec r,t)$=] product of the number $\nu_j^{\rm ss}(\vec r,E)$ of secondary neutrons (both prompt and delayed) for a fission of isotope $j$ times the macroscopic fission cross section for a fission of isotope $j$. \item [$\beta_{\ell,j}$=] delayed neutron fraction in precursor group $\ell$. \end{description} \vskip 0.2cm The following condensation formulas have been used: \begin{equation} \nu_j^{\rm ss}(\vec r,E)=\nu_j^{\rm pr}(\vec r,E)+\sum_\ell \nu_{\ell,j}^{\rm D}(\vec r,E) \end{equation} \begin{equation} \beta_{\ell,j}={\int\limits_0^\infty dE \ \nu_{\ell,j}^{\rm D}(\vec r,E)\Sigma_{{\rm f},j}(\vec r,E) \phi(\vec r,E) \over \int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E)\Sigma_{{\rm f},j}(\vec r,E) \phi(\vec r,E)} = {\sum\limits_g \nu\Sigma_{{\rm f},\ell,j}^{{\rm D},g}(\vec r) \phi^g(\vec r) \over \sum\limits_g \nu\Sigma_{{\rm f},j}^g(\vec r) \phi^g(\vec r)} \end{equation} \begin{equation} \left[1-\sum_\ell\beta_{\ell,j}\right]={\int\limits_0^\infty dE \ \nu_j^{\rm pr}(\vec r,E)\Sigma_{{\rm f},j}(\vec r,E) \phi(\vec r,E) \over \int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E)\Sigma_{{\rm f},j}(\vec r,E) \phi(\vec r,E)} = {\sum\limits_g \nu\Sigma_{{\rm f},j}^{{\rm pr},g}(\vec r) \phi^g(\vec r) \over \sum\limits_g \nu\Sigma_{{\rm f},j}^g(\vec r) \phi^g(\vec r)} \end{equation} \begin{equation} \phi^g(\vec r)=\int_{E_g}^{E_{g-1}} dE \ \phi(\vec r,E) \end{equation} \begin{equation} \chi_j^{{\rm pr},g}=\int_{E_g}^{E_{g-1}} dE \ \chi_j^{\rm pr}(E) \end{equation} \begin{equation} \chi_{\ell,j}^{{\rm D},g}=\int_{E_g}^{E_{g-1}} dE \ \chi_{\ell,j}^{\rm D}(E) \ \ ; \ \ \ \ell=1,N_d \end{equation} \begin{equation} <1/v>^g={1 \over \phi^g(\vec r)} \int_{E_g}^{E_{g-1}} dE \ {\displaystyle 1 \over \displaystyle v(E)} \ \phi(\vec r,E) \end{equation} \begin{equation} \Sigma^g(\vec r)={1 \over \phi^g(\vec r)} \int_{E_g}^{E_{g-1}} dE \ \Sigma(\vec r,E) \ \phi(\vec r,E) \end{equation} \begin{equation} \Sigma_{\rm s0}^{g \leftarrow h}(\vec r)={1 \over \phi^h(\vec r)} \int_{E_g}^{E_{g-1}} dE \int_{E_h}^{E_{h-1}} dE' \ \Sigma_{\rm s0}(\vec r,E \leftarrow E') \ \phi(\vec r,E') \end{equation} \begin{equation} \nu\Sigma_{{\rm f},j}^g(\vec r)={1 \over \phi^g(\vec r)} \int_{E_g}^{E_{g-1}} dE \ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E) \ \ \ . \end{equation} \noindent where the variable $t$ has been omitted in order to simplify the notation. \vskip 0.2cm A steady-state fission spectrum (taking into account both prompt and delayed neutrons), for a fission of isotope $j$, is also required for solving the static neutron diffusion equation: \begin{equation} \chi_j^{\rm ss}(E)=\left[1-\sum_\ell\beta_{\ell,j}\right] \chi_j^{\rm pr}(E)+\sum_\ell \beta_{\ell,j} \ \chi_{\ell,j}^{\rm D}(E) \ \ \ . \end{equation} \vskip 0.2cm The group-integrated steady-state fission spectrum is therefore given as \begin{equation} \chi_j^{{\rm ss},g} = \left[1-\sum_\ell\beta_{\ell,j}\right] \chi_j^{{\rm pr},g}+\sum_\ell \beta_{\ell,j} \ \chi_{\ell,j}^{{\rm D},g} \ \ \ . \end{equation} \vskip 0.2cm The space-time diffusion equation is generally solved by assuming a {\sl unique} averaged fissionable isotope. In this case, the variable $N_f$ is set to 1 in the {\sc macrolib} specification and the summations over $j$ disapears in Eqs.~(\ref{eq:eq7}) and~(\ref{eq:eq8}): \begin{eqnarray} \nonumber <1/v>^g {\partial\over \partial t}\phi^g(\vec r,t) &=& \chi^{{\rm pr},g} \left[1-\sum_\ell\beta_\ell\right]\sum_h \nu\Sigma_{\rm f}^h(\vec r,t) \phi^h(\vec r,t)\\ \nonumber &+&\sum_\ell\chi_\ell^{{\rm D},g}\lambda_\ell c_\ell(\vec r,t) + \nabla \cdot D^g(\vec r,t) \nabla\phi^g(\vec r,t)\\ &-& \Sigma^g(\vec r,t) \phi^g(\vec r,t) + \sum_h \Sigma_{\rm s0}^{g \leftarrow h}(\vec r,t) \phi^h(\vec r,t) \label{eq:eq9} \end{eqnarray} \noindent together with the set of $n_d$ precursor equations: \begin{equation} {\partial c_\ell(\vec r,t) \over \partial t}=\beta_\ell \sum_g \nu\Sigma_{\rm f}^g(\vec r,t) \phi^g(\vec r,t)-\lambda_\ell c_\ell(\vec r,t) \ \ ; \ \ \ \ell=1,N_d \label{eq:eq10} \end{equation} \vskip 0.2cm Using additional approximations, the new condensation relations are rewritten as \begin{equation} \nu\Sigma_{\rm f}(\vec r,E)=\sum_j \nu\Sigma_{{\rm f},j}(\vec r,E)=\sum_j \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \end{equation} \begin{equation} \beta_\ell={\sum\limits_j{\beta_{\ell,j}\int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E)} \over \sum\limits_j{\int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E)} } = {\sum\limits_j{\beta_{\ell,j}\sum\limits_g \nu\Sigma_{{\rm f},j}^g(\vec r) \ \phi^g(\vec r)} \over \sum\limits_j{\sum\limits_g \nu\Sigma_{{\rm f},j}^g(\vec r) \ \phi^g(\vec r)} } \ \ \ , \end{equation} \vskip 0.2cm \begin{eqnarray} \nonumber \chi^{{\rm pr},g}&=&{\sum\limits_j\left[1-\sum\limits_\ell\beta_{\ell,j}\right]{\int\limits_{E_g}^{E_{g-1}} dE \ \chi_j^{\rm pr}(E) \int\limits_0^\infty dE' \ \nu_j^{\rm ss}(\vec r,E') \ \Sigma_{{\rm f},j}(\vec r,E') \ \phi(\vec r,E')} \over \left[1-\sum\limits_\ell\beta_\ell\right] \sum\limits_j{\int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E)}} \\ &=& {\sum\limits_j\left[1-\sum\limits_\ell\beta_{\ell,j}\right]{ \chi_j^{{\rm pr},g} \sum\limits_h \nu\Sigma_{{\rm f},j}^h(\vec r) \ \phi^h(\vec r)} \over \left[1-\sum\limits_\ell\beta_\ell\right] \sum\limits_j{ \sum\limits_h \nu\Sigma_{{\rm f},j}^h(\vec r) \ \phi^h(\vec r)}} \end{eqnarray} \noindent and \begin{eqnarray} \nonumber \chi_\ell^{{\rm D},g}&=&{\sum\limits_j \beta_{\ell,j}{\int\limits_{E_g}^{E_{g-1}} dE \ \chi_{\ell,j}^{\rm D}(E) \int\limits_0^\infty dE' \ \nu_j^{\rm ss}(\vec r,E') \ \Sigma_{{\rm f},j}(\vec r,E') \ \phi(\vec r,E')} \over \beta_\ell \sum\limits_j{\int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E)}} \ \ ; \ \ \ \ell=1,N_d \\ &=&{\sum\limits_j \beta_{\ell,j} \ {\chi_{\ell,j}^{{\rm D},g} \sum\limits_h \nu\Sigma_{{\rm f},j}^h(\vec r) \ \phi^h(\vec r)} \over \beta_\ell \sum\limits_j{\sum\limits_h \nu\Sigma_{{\rm f},j}^h(\vec r) \ \phi^h(\vec r)}} \ \ ; \ \ \ \ell=1,N_d \ \ \ . \end{eqnarray} \vskip 0.2cm The above definitions ensure that the group-integrated steady-state fission spectrum is given as \begin{equation} \chi^{{\rm ss},g} = \left[1-\sum_\ell\beta_\ell\right] \chi^{{\rm pr},g}+\sum_\ell \beta_\ell \ \chi_\ell^{{\rm D},g} \ \ \ . \end{equation} \vskip 0.2cm A mean neutron generation time can also be written as \begin{equation} \Lambda={\int\limits_0^\infty dE \ {\displaystyle 1 \over \displaystyle v(E)} \ \phi(\vec r,E) \over \sum\limits_j{\int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E)\ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E)}}={\sum\limits_g <1/v>^g \ \phi^g(\vec r) \over \sum\limits_j{\sum\limits_g \nu\Sigma_{{\rm f},j}^g(\vec r) \ \phi^g(\vec r)}} \ \ \ . \end{equation} \eject