\section{Contents of a \dir{kinet} directory}\label{sect:kinetdir} The {\tt L\_KINET} specification is used to store the data related to the space-time neutron kinetics calculations. This directory also contains the main calculations results corresponding to the current time step of a transient. \subsection{State vector content for the \dir{kinet} data structure}\label{sect:kinetstate} The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}^{k}_{i}$, represent: \begin{itemize} \item The current time-step index $N_{tr}=\mathcal{S}^{k}_{1}$ \item The number of delayed-neutron precursor groups $N_{dg}=\mathcal{S}^{k}_{2}$ \item The number of energy groups $N_{gr}=\mathcal{S}^{k}_{3}$ \item The type of geometry $I_{geo} = \mathcal{S}^{k}_{4}$ \item The total number of finite elements $N_{el}=\mathcal{S}^{k}_{5}$ \item The total number of unknowns per energy group $N_{un}=\mathcal{S}^{k}_{6}$ \item The number of flux unknowns per energy group $N_{uf}=\mathcal{S}^{k}_{7}$ \item The number of precursors unknowns per delayed group $N_{up}=\mathcal{S}^{k}_{8}$ \item The number of fissile isotopes $N_{fiss}=\mathcal{S}^{k}_{9}$ \item The type of system matrices $N_{sys}=\mathcal{S}^{k}_{10}$ \item Number of free iteration per variational acceleration cycle $N_{f}=\mathcal{S}^{k}_{11}$ \item Number of accelerated iteration per variational acceleration cycle $N_{a}=\mathcal{S}^{k}_{12}$ \item Type of normalization for the flux $I_{\rm norm}=\mathcal{S}^{k}_{13}$ where \begin{displaymath} I_{\rm norm} = \left\{ \begin{array}{rl} 0 & \textrm{No normalization} \\ 1 & \textrm{Imposed factor} \\ 2 & \textrm{Maximum flux normalization} \\ 3 & \textrm{Initial power normalization} \end{array} \right. \end{displaymath} \item Maximum number of thermal (up-scattering) iterations $M_{\rm in}=\mathcal{S}^{k}_{14}$ \item Maximum number of outer iterations $M_{\rm out}=\mathcal{S}^{k}_{15}$ \item Initial number of ADI iterations in Trivac $M_{\rm adi}=\mathcal{S}^{k}_{16}$ \item Temporal integration scheme for fluxes $I_{\rm ifl}=\mathcal{S}^{k}_{17}$ where \begin{displaymath} I_{\rm ifl} = \left\{ \begin{array}{rl} 1 & \textrm{Implicit scheme ($\Theta_{\rm f}=1$)} \\ 2 & \textrm{Crank-Nicholson scheme ($\Theta_{\rm f}=0.5$)} \\ 3 & \textrm{General theta method} \end{array} \right. \end{displaymath} \item Temporal integration scheme for precursors $I_{\rm ipr}=\mathcal{S}^{k}_{18}$ where \begin{displaymath} I_{\rm ipr} = \left\{ \begin{array}{rl} 1 & \textrm{Implicit scheme ($\Theta_{\rm p}=1$)} \\ 2 & \textrm{Crank-Nicholson scheme ($\Theta_{\rm p}=0.5$)} \\ 3 & \textrm{General theta method} \\ 4 & \textrm{Analytical integration method for precursors} \end{array} \right. \end{displaymath} \item Exponential transformation flag $I_{\rm iexp}=\mathcal{S}^{k}_{19}$ where \begin{displaymath} I_{\rm iexp} = \left\{ \begin{array}{rl} 0 & \textrm{not used} \\ 1 & \textrm{used} \end{array} \right. \end{displaymath} \item Adjoint kinetics calculation flag $I_{\rm adj}=\mathcal{S}^{k}_{20}$ where \begin{displaymath} I_{\rm adj} = \left\{ \begin{array}{rl} 0 & \textrm{direct (forward) calculation} \\ 1 & \textrm{adjoint (backward) calculation} \end{array} \right. \end{displaymath} \end{itemize} \goodbreak \subsection{The main \dir{kinet} directory}\label{sect:kinetdirmain} The following records and sub-directories will be found in the \dir{kinet} directory: \begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{kinet}}{8.0cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_KINET\blank{5}})} \IntEnr {STATE-VECTOR}{$40$} {Vector describing the various parameters associated with this data structure $\mathcal{S}^{k}_{i}$, as defined in \Sect{kinetstate}.} \RealEnr {EPS-CONVERGE}{$4$}{} {Convergence parameters $\Delta_i^\epsilon$} \CharEnr {TRACK-TYPE\blank{2}}{$*12$} {Type of tracking considered ($\mathsf{CDOOR}$). Allowed values are: {\tt 'BIVAC'} and {\tt 'TRIVAC'}} \IntEnr {E-IDLPC\blank{5}}{$N_{el}$} {Position of averaged precursor concentrations in vector {\tt E-PREC}.} \RealEnr {DELTA-T\blank{5}}{$1$}{s} {Current time increment.} \RealEnr {TOTAL-TIME\blank{2}}{$1$}{s} {Total elapsed time from the beginning of a transient.} \RealEnr {BETA-D\blank{6}}{$N_{dg}$}{} {Delayed-neutron fraction for each delayed-neutron precursor group.} \RealEnr {LAMBDA-D\blank{4}}{$N_{dg}$}{s$^{-1}$} {Radioactive decay constants of each delayed-neutron precursor group.} \RealEnr {CHI-D\blank{7}}{$N_{dg},N_{gr}$}{} {Multigroup delayed-neutron fission spectrum in each precursor group.} \RealEnr {E-VECTOR\blank{4}}{$N_{uf},N_{gr}$}{} {Kinetics solution for fluxes at current time step.} \RealEnr {E-PREC\blank{6}}{$N_{up},N_{dg}$}{} {Kinetics solution for precursor concentrations at current time step.} \RealEnr {E-KEFF\blank{6}}{$1$}{} {Steady-state value of the initial $k_{\rm eff}$.} \RealEnr {CTRL-FLUX\blank{3}}{$1$}{} {Maximum value of flux used for the controlling purpose.} \RealEnr {CTRL-PREC\blank{3}}{$N_{up}\times N_{fiss}$}{} {Precursor concentrations at location of maximum flux.} \IntEnr {CTRL-IDL\blank{4}}{$1$} {Position of a maximum value within the flux vector.} \IntEnr {CTRL-IGR\blank{4}}{$1$} {Energy group number corresponding to a maximum flux value.} \OptRealEnr {POWER-INI\blank{3}}{$1$}{$I_{\rm norm}=3$}{MW} {Initial power.} \OptRealEnr {E-POW\blank{7}}{$1$}{$I_{\rm norm}=3$}{MW} {Actual power.} \OptRealEnr {OMEGA\blank{7}}{$N_{mix},N_{gr}$}{$I_{\rm iexp}=1$}{s$^{-1}$} {Exponential transformation factor. $N_{mix}$ is the number of material mixtures} \end{DescriptionEnregistrement} The convergence parameters $\Delta_i^\epsilon$ represent: \begin{itemize} \item $\Delta_1^\epsilon$ is the thermal (up-scattering) iteration flux convergence parameter \item $\Delta_2^\epsilon$ is the outer iteration flux convergence parameter \item $\Theta_{\rm f}$ is the value of theta-parameter for fluxes \item $\Theta_{\rm p}$ is the value of theta-parameter for precursors \end{itemize} \eject