\section{Contents of a \dir{edition} directory}\label{sect:editiondir} This directory contains the main editing results. For the purpose of illustration we will assume that the \moc{EDI:} module is executed using the following data: \vskip -0.1cm \begin{verbatim} EDITING := EDI: FLUX LIBRARY VOLMAT :: MERG COMP COND 27 69 ALL SAVE ON EDITCELL2G ; \end{verbatim} \vskip -0.1cm \noindent where \moc{EDITING} is the final \dds{edition} data structure. The data structures \moc{FLUX}, \moc{LIBRARY} and \moc{VOLMAT} are respectively of type \dds{fluxunk}, \dds{microlib} and \dds{tracking}. Assuming that the initial number of regions in \moc{VOLMAT} is $N$ and the number of groups in \moc{LIBRARY} is $G=69$, then the final information that will be stored in the \dds{editing} data structure will represent a two group ($G_{c}=2$) one mixture $N_{h}$ \dir{microlib}. \subsection{State vector content for the \dir{edition} data structure}\label{sect:editionstate} The dimensioning parameters for this data structure, which are stored in the state vector $\mathcal{S}^{\rm edi}_{i}$, represent: \begin{itemize} \item The number of homogeneous mixtures saved $N_{H}=\mathcal{S}^{\rm edi}_{1}$ for the last editing step \item The number of condensed groups considered $M_{G}=\mathcal{S}^{\rm edi}_{2}$ for the last editing step \item Editing flag to indicate the presence of 4 factor editing $I_{4f}=\mathcal{S}^{\rm edi}_{3}$ for the last editing step \item Editing flag to indicate that the up-scattering contributions have all been transferred to the diagonal part of the scattering matrix $I_{U}=\mathcal{S}^{\rm edi}_{4}$ for the last editing step \item The number of mixture activated $N_{A}=\mathcal{S}^{\rm edi}_{5}$ for the last editing step \item Editing flag to indicate the types of statistics generated by \moc{EDI:} $I_{S}=\mathcal{S}^{\rm edi}_{6}$ for the last editing step \item Editing flag to indicate which boundary flux editions are used in \moc{EDI:}. These editions are required for computing assembly discontinuity factors (ADF) or to perform some types of {\sl superhomog\'en\'eisation} (SPH) calculations. $I_{\rm adf}=\mathcal{S}^{\rm edi}_{7}$ for the last editing step \begin{displaymath} I_{\rm adf} = \left\{ \begin{array}{ll} 0 & \textrm{no boundary flux editions;} \\ 1 & \textrm{use boundary currents obtained using the \moc{ALBS} keyword in DRAGON;} \\ 2 & \textrm{recover boundary fluxes from informations located in the {\tt REF:ADF} directory;} \\ -2 & \textrm{compute assembly discontinuity factors (ADF) from informations located in} \\ & \textrm{the {\tt REF:ADF} directory;} \\ 3 & \textrm{use boundary currents obtained from the current iteration method in Eurydice;} \\ 4 & \textrm{recover boundary fluxes or discontinuity factors from the {\tt MACROLIB/ADF}} \\ & \textrm{directory.} \\ \end{array} \right. \end{displaymath} \item Editing flag to indicate the type of tracking to be performed on a macro-geometry built by module {\tt EDI:}. $I_{\rm cell}=\mathcal{S}^{\rm edi}_{8}$ for the last editing step \begin{displaymath} I_{\rm cell} = \left\{ \begin{array}{ll} 1 & \textrm{the macro-geometry is tracked by module {\tt SYBILT:} or {\tt EXCELT:};} \\ 2 & \textrm{the macro-geometry is tracked by module {\tt NXT:};} \\ 3 & \textrm{the macro-geometry is tracked by another module.} \\ \end{array} \right. \end{displaymath} \item The number of extracted isotopes in the output microlib $I_{m}=\mathcal{S}^{\rm edi}_{9}$ for the last editing step \item The print level considered $I_{p}=\mathcal{S}^{\rm edi}_{10}$ for the last editing step \item Editing flag to indicate the types of cross section saved in \moc{EDI:} $I_{x}=\mathcal{S}^{\rm edi}_{11}$ for the last editing step \item The type of weighting used for $P_1$ cross section information $I_{\rm w}=\mathcal{S}^{\rm edi}_{12}$ for the last editing step ($=0$: flux weighting; $=1$ current weighting) \item The maximum number of isotopes per mixture $M_{I}=\mathcal{S}^{\rm edi}_{13}$ \item The maximum number of condensed groups in all editing $M_{g}=\mathcal{S}^{\rm edi}_{14}$ \item The maximum number of homogeneous mixtures in all editing $M_{h}=\mathcal{S}^{\rm edi}_{15}$ \item The total number of ISOTXS files generated $M_{F}=\mathcal{S}^{\rm edi}_{16}$ \item The maximum number of regions before homogenization $M_{\rm max}=\mathcal{S}^{\rm edi}_{17}$ \item Editing flag $=1$ for H-factor edition; $=0$ otherwise $I_{H-fac}=\mathcal{S}^{\rm edi}_{18}$ \item Number of delayed neutron precursor groups $N_{\rm del}=\mathcal{S}^{\rm edi}_{19}$ \item Geometry index $L_{\rm geo}=\mathcal{S}^{\rm edi}_{20}$ \begin{displaymath} L_{\rm geo} = \left\{ \begin{array}{ll} 0 & \textrm{the macro geometry is not available}\\ 1 & \textrm{the macro-geometry of the last editing is available}\\ \end{array} \right. \end{displaymath} \item Type of weighting for homogenization or/and condensation of cross-section information $I_{\rm adj}=\mathcal{S}^{\rm edi}_{21}$ \begin{displaymath} I_{\rm adj} = \left\{ \begin{array}{ll} 0 & \textrm{use direct flux;} \\ 1 & \textrm{use adjoint flux.} \\ \end{array} \right. \end{displaymath} \item Type of current used for $P_1$ weighting if $I_{\rm w}\ne 0$. $I_{\rm curr}=\mathcal{S}^{\rm edi}_{22}$ \begin{displaymath} I_{\rm curr} = \left\{ \begin{array}{ll} 1 & \textrm{use a current obtained from an heterogeneous leakage model;} \\ 2 & \textrm{use the Todorova flux;} \\ 4 & \textrm{use spherical harmonics weighting.} \\ \end{array} \right. \end{displaymath} \item Number of reactions saved on output microlib $N_{\rm reac}=\mathcal{S}^{\rm edi}_{23}$ \begin{displaymath} N_{\rm reac} = \left\{ \begin{array}{ll} 0 & \textrm{all available reactions are saved;} \\ >0 & \textrm{only reactions listed in {\tt REF:HVOUT} array are saved.} \\ \end{array} \right. \end{displaymath} \item Edition flag for the integrated net currents along each axis $I_{\rm intcur}=\mathcal{S}^{\rm edi}_{24}$ \begin{displaymath} I_{\rm intcur} = \left\{ \begin{array}{ll} 0 & \textrm{not set;} \\ 1 & \textrm{integrated current edition.} \\ \end{array} \right. \end{displaymath} \item Type of condensation of the diffusion coefficients $I_{\rm golver}=\mathcal{S}^{\rm edi}_{25}$ \begin{displaymath} I_{\rm golver} = \left\{ \begin{array}{ll} 0 & \textrm{use weighting of leakage coefficients;} \\ 1 & \textrm{use weighting of transport cross sections with the Golfier-Vergain correction} \\ & \textrm{factors.} \\ \end{array} \right. \end{displaymath} \end{itemize} \subsection{The main \dir{edition} directory}\label{sect:editiondirmain} On its first level, the following records and sub-directories will be found in the \dir{edition} directory: \begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{edition}}{7.0cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_EDIT\blank{6}}).} \IntEnr {STATE-VECTOR}{$40$} {Vector describing the various parameters associated with this data structure $\mathcal{S}^{\rm edi}_{i}$, as defined in \Sect{editionstate}.} \CharEnr {TITLE\blank{7}}{$*72$} {Title of the last editing performed ($\mathsf{TITLE}$) } \OptCharEnr {LAST-EDIT\blank{3}}{$*12$}{$|\mathcal{S}^{\rm edi}_{11}|\ge 2$} {Name of the last editing sub-directory saved ($\mathsf{LAST}$)} \CharEnr {LINK.GEOM\blank{3}}{$*12$} {Name of the {\sc geometry} on which the last edition was based.} \IntEnr {REF:IMERGE\blank{2}}{$\mathcal{S}^{\rm edi}_{17}$} {Merged region number associated with each of the original region number $M_{r}$} \RealEnr {REF:VOLUME\blank{2}}{$\mathcal{S}^{\rm edi}_{17}$}{cm$^{3}$} {Volume associated with each of the original region number $V_{r}$} \IntEnr {REF:MATCOD\blank{2}}{$\mathcal{S}^{\rm edi}_{17}$} {Mixture number associated with each of the original region number $M_{\rm mix}$} \IntEnr {REF:IGCOND\blank{2}}{$\mathcal{S}^{\rm edi}_{2}$} {Reference group limits associated with the merged groups $C_{g}$} \OptDirEnr {REF:ADF\blank{5}}{$\mathcal{S}^{\rm edi}_{7} = 2$} {ADF--related input data as presented in \Sect{editionADF}.} \OptCharEnr {REF:HVOUT\blank{3}}{$(\mathcal{S}^{\rm edi}_{23})*8$}{$\mathcal{S}^{\rm edi}_{23} > 0$} {Names of the reactions saved in the output microlib.} \OptCharEnr {CARISO\blank{6}}{$(\mathcal{S}^{\rm edi}_{9})*12$}{$\mathcal{S}^{\rm edi}_{9}\ge 1$} {Name of extracted isotopes saved during the last editing ($\mathsf{NAMI}$)} \OptIntEnr {IACTI\blank{7}}{$\mathcal{S}^{\rm edi}_{5}$}{$\mathcal{S}^{\rm edi}_{5}\ge 1$} {Original mixture numbers for which activation data was generated ($A_{m}$)} \OptDirEnr {MACRO-GEOM\blank{2}}{$\mathcal{S}^{\rm edi}_{20} = 1$} {Macro--{\sl geometry} directory. This geometry may be used to complete the {\sc compo} database, for performing a geometry equivalence ({\sl equigeom}) and/or as the macro--geometry in SPH calculations. This directory follows the specification presented in \Sect{geometrydirmain}.} \OptCharEnr {LINK.MACGEOM}{$*12$}{$\mathcal{S}^{\rm edi}_{20} = 1$} {Name of the macro--{\sl geometry} on which the last edition was based.} \DirVar {\listedir{micdir}} {Set of sub-directories containing the editing information. This directory follows the specification presented in \Sect{microlibdirmain}.} \end{DescriptionEnregistrement} The set of directory \listedir{micdir} names $\mathsf{EDIDIR}$ will be composed according to the following rules. In the case where the set of keywords \moc{SAVE} \moc{ON} are used followed by a directory name as above, the contents of $\mathsf{EDIDIR}$ will be identical the name of the specified directory (e.~g., \verb*|EDITCELL2G |). If the \moc{SAVE} option is used without specifying a specific directory, then the first eight characters of $\mathsf{EDIDIR}$ ($\mathsf{EDIDIR}$\verb*|(1:8)|) will be given as \verb*|REF-CASE| while the last four character ($\mathsf{EDIDIR}$\verb*|(9:12)|) will be a unique character variable representing the successive directory saved. This character variable will be created as follows: \vskip -0.1cm $$ \mathtt{WRITE(}\mathsf{EDIDIR}\mathtt{(9:12),'(I4.4)')}\: J $$ \vskip -0.1cm where $1\leq J $ represents the $J^{\textrm{th}}$ execution of the \moc{EDI:} module. In the case above, we would have a single editing directory of the form: \begin{DescriptionEnregistrement}{Example of an editing directory}{8.0cm} \DirEnr {EDITCELL2G\blank{2}}{Two groups \dir{microlib} sub-directory} \end{DescriptionEnregistrement} \goodbreak \subsection{The \moc{/REF:ADF/} sub-directory in \dir{edition}}\label{sect:editionADF} Sub-directory containing input data for ADF-type boundary flux edition. \begin{DescriptionEnregistrement}{Records in the \moc{/REF:ADF/} sub-directory}{7.5cm} \IntEnr {NTYPE\blank{7}}{$1$} {Number of ADF-type boundary flux edits.} \IntEnr {NADF\blank{8}}{\tt NTYPE} {$N^{\rm adf}_i$: number of regions included in each ADF-type boundary flux edit.} \CharEnr {HADF\blank{8}}{({\tt NTYPE})$*8$} {Name of each ADF-type boundary flux edit. Standard names are: $=$ \moc{FD\_C}: corner flux edition; $=$ \moc{FD\_B}: surface (assembly gap) flux edition; $=$ \moc{FD\_H}: row flux edition. These are the first row of surrounding cells in the assembly.} \IntVar {\listedir{type}}{$N^{\rm adf}_i$} {Set of integer arrays containing the editing information. Indices of the regions of the reference geometry belonging to the flux edition. Name {\sl type} is a component of {\tt HADF} array.} \end{DescriptionEnregistrement} \clearpage