\section{Contents of a \dir{burnup} directory}\label{sect:burnupdir} This directory contains the main burnup information, namely the multigroup flux and the isotopic concentration at each time or burnup step. \subsection{State vector content for the \dir{burnup} data structure}\label{sect:burnupstate} The dimensioning parameters for the \dir{burnup} data structure, which are stored in the state vector $\mathcal{S}^{b}$, represent: \begin{itemize} \item The type of solution considered $I_{s}=\mathcal{S}^{b}_{1}$ where \vskip -0.8cm \begin{displaymath} I_{s} = \left\{ \begin{array}{rl} 1 & \textrm{Fifth-order Cash-Karp method}\\ 2 & \textrm{Forth-order Kaps-Rentrop method} \end{array} \right. \end{displaymath} \item The type of burnup considered $I_{t}=\mathcal{S}^{b}_{2}$ where \vskip -0.8cm \begin{displaymath} I_{t} = \left\{ \begin{array}{rl} 0 & \textrm{Out of core or zero flux/power depletion} \\ 1 & \textrm{Constant flux depletion} \\ 2 & \textrm{Constant fuel power depletion} \\ 3 & \textrm{Constant assembly power depletion} \end{array} \right. \end{displaymath} \item Number of time steps for which burnup properties are present in this directory $N_{t}=\mathcal{S}^{b}_{3}$ \item Total number of isotopes $N_{I}=\mathcal{S}^{b}_{4}$ \item Number of depleting mixtures $N^{\rm depl}_{M}=\mathcal{S}^{b}_{5}$ \item Number of depleting reactions $N^{\rm depl}_{R}=\mathcal{S}^{b}_{6}$ \item Number of depleting isotopes $N^{\rm depl}_{I}=\mathcal{S}^{b}_{7}$ \item Number of mixtures $N_m=\mathcal{S}^{b}_{8}$ \item Microscopic reaction rate extrapolation option in solving the burnup equations $I_{e}=\mathcal{S}^{b}_{9}$ where \vskip -0.8cm \begin{displaymath} I_{e} = \left\{ \begin{array}{rl} 0 & \textrm{Do not extrapolate} \\ 1 & \textrm{Perform linear extrapolation} \\ 2 & \textrm{Perform parabolic extrapolation} \\ \end{array} \right. \end{displaymath} \item Constant power normalization option for the burnup calculation $I_{g}=\mathcal{S}^{b}_{10}$ where \vskip -0.8cm \begin{displaymath} I_{g} = \left\{ \begin{array}{rl} 0 & \textrm{Compute the burnup using the power released in fuel} \\ 1 & \textrm{Compute the burnup using the power released in the global geometry} \\ \end{array} \right. \end{displaymath} This option have an effect only in cases where some non-depleting mixtures are producing energy. \item Saturation of initial number densities $I_{s}=\mathcal{S}^{b}_{11}$ where \vskip -0.8cm \begin{displaymath} I_{s} = \left\{ \begin{array}{rl} 0 & \textrm{Do not store saturated initial number densities in the {\sc burnup} object} \\ 1 & \textrm{Store saturated initial number densities} \\ \end{array} \right. \end{displaymath} This option have an effect only in cases where some depleting isotopes are at saturation. \item Type of saturation model $I_{d}=\mathcal{S}^{b}_{12}$ where \vskip -0.8cm \begin{displaymath} I_{d} = \left\{ \begin{array}{rl} 0 & \textrm{Do not use Dirac functions in saturated number densities} \\ 1 & \textrm{Use Dirac functions in saturated number densities} \\ \end{array} \right. \end{displaymath} This option have an effect only in cases where some depleting isotopes are at saturation. \item Perturbation flag for cross sections $I_{p}=\mathcal{S}^{b}_{13}$ where \vskip -0.8cm \begin{displaymath} I_{p} = \left\{ \begin{array}{rl} 0 & \textrm{Time-dependent cross sections will be used if available} \\ 1 & \textrm{Time-independent cross sections will be used} \\ \end{array} \right. \end{displaymath} \item Neutron flux recovery flag $I_{f}=\mathcal{S}^{b}_{14}$ where \vskip -0.8cm \begin{displaymath} I_{f} = \left\{ \begin{array}{rl} 0 & \textrm{Neutron flux is recovered from a L\_FLUX object} \\ 1 & \textrm{Neutron flux is recovered from the embedded macrolib present in a} \\ & \textrm{L\_LIBRARY object} \\ \end{array} \right. \end{displaymath} \item Fission yield data recovery flag $I_{y}=\mathcal{S}^{b}_{15}$ where \vskip -0.8cm \begin{displaymath} I_{y} = \left\{ \begin{array}{rl} 0 & \textrm{Fission yield data is recovered from {\tt DEPL-CHAIN} directory (see \Sect{microlibdirdepletion})} \\ 1 & \textrm{Fission yield data is recovered from {\tt PIFI} and {\tt PYIELD} records in /isotope/} \\ & \textrm{directory (see Table~\ref{tabl:tabiso3})} \\ \end{array} \right. \end{displaymath} \end{itemize} \subsection{The main \dir{burnup} directory}\label{sect:burnupdirmain} On its first level, the following records and sub-directories will be found in the \dir{burnup} directory: \begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{burnup}}{8.0cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {Signature of the \dir{burnup} data structure ($\mathsf{SIGNA}=${\tt L\_BURNUP\blank{4}}).} \IntEnr {STATE-VECTOR}{$40$} {Vector describing the various parameters associated with this data structure $\mathcal{S}^{b}_{i}$, as defined in \Sect{burnupstate}.} \RealEnr {EVOLUTION-R\blank{1}}{$5$}{} {Vector describing the various parameters associated with the burnup calculation options $R_{i}$} \CharEnr {LINK.LIB\blank{4}}{$*12$} {Name of the {\sc microlib} on which the last depletion step was based.} \RealEnr {DEPL-TIMES\blank{2}}{$N_{t}$}{$10^{8}$ s} {Vector describing the various time steps at which burnup information has been saved $T_{i}$} \RealEnr {FUELDEN-INIT}{$3$}{} {Vector giving the initial density of heavy element in the fuel $\rho_{f}$ (g cm$^{-3}$), the initial mass of heavy element in the fuel $m_{f}$ (g) and the initial mass of heavy element in the fuel divided by the global geometry volume (g cm$^{-3}$)} \RealEnr {VOLUME-MIX\blank{2}}{$N_m$}{cm$^3$} {Vector giving the mixture volumes} \RealEnr {FUELDEN-MIX\blank{1}}{$N_m$}{g} {Initial mass of heavy element contained in each mixture} \RealEnr {WEIGHT-MIX\blank{2}}{$N_m$}{g} {Initial mass of all the isotopes contained in each mixture} \IntEnr {DEPLETE-MIX\blank{1}}{$N_m \times N^{\rm depl}_{I}$} {Matrix giving the index in the {\tt ISOTOPESDENS} record of each depleting isotope in each mixture.} \CharEnr {ISOTOPESUSED}{$(N_{I})*12$} {Alias name of the isotopes} \IntEnr {ISOTOPESMIX\blank{1}}{$N_{I}$} {Mixture number associated with each isotope} \IntEnr {MIXTURESBurn}{$N_m$} {Depletion flag array. A component is set to 1 to indicate that a mixture is depleting.} \IntEnr {MIXTURESPowr}{$N_m$} {Power flag array. A component is set to 1 to indicate that a mixture is producing power.} \DirVar {\listedir{depldir}} {Set of $N_{t}$ sub-directories containing the properties associated with each burnup step $T_{i}$} \end{DescriptionEnregistrement} The set of directory \listedir{depldir} names $\mathsf{DEPLDIR}$ will be composed according to the following laws. The first eight character ($\mathsf{DEPLDIR}$\verb*|(1:8)|) will always be given by \verb*|DEPL-DAT|. The last four characters ($\mathsf{DEPLDIR}$\verb*|(9:12)|) represent the time step saved. For the case where $N_{t}$ time steps were saved we would use the following FORTRAN instructions to create the last four characters of each of the directory names: $$ \mathtt{WRITE(}\mathsf{DEPLDIR}\mathtt{(9:12),'(I4.4)')}\: J $$ for $1\leq J \leq N_{t}$ with the time stamp associated with each directory being given by $T_{J}$. For the case where ($N_{t}=2$), two such directory would be generated, namely \begin{DescriptionEnregistrement}{Example of depletion directories}{8.0cm} \DirEnr {DEPL-DAT0001}{Sub-directories which contain the information associated with time step 1} \DirEnr {DEPL-DAT0002}{Sub-directories which contain the information associated with time step 2} \end{DescriptionEnregistrement} \clearpage \subsection{The depletion sub-directory \dir{depldir} in \dir{burnup}}\label{sect:burnupdirdepletion} Inside each depletion directory the following records and sub-directories will be found: \begin{DescriptionEnregistrement}{Contents of a depletion sub-directory in \dir{burnup}}{7.0cm} \RealEnr {ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$} {Isotopic densities $\rho_{i}$ for each of the isotopes described in the \dir{microlib} directory where the order of the isotopes is also specified} \RealEnr {MICRO-RATES\blank{1}}{$N^{\rm dim}$}{$10^{-8}$ s$^{-1}\ $} {Values of the microscopic reaction rate of the depleting reactions for each depleting isotope and each mixture. The macroscopic reaction rate related to the non-depleting isotopes is stored at location $N^{\rm depl}_{I}+1$. The $N^{\rm depl}_{R}$ reaction types are stored in the order of the {\tt 'DEPLETE-IDEN'} array in Table~\ref{tabl:tabchain}, starting with the {\tt 'NFTOT'} reaction. The flux-induced power factors are stored in location $N^{\rm depl}_{R}$. The decay power (delayed) factors are stored in location $N^{\rm depl}_{R}+1$ Both flux-induced and decay power are given in units of $10^{-8}$ MeV/s. $N^{\rm dim}=(N^{\rm depl}_{I}+1) \times (N^{\rm depl}_{R}+1) \times N_m$} \RealEnr {INT-FLUX\blank{4}}{$N_m$}{cm s$^{-1}$} {Integrated flux in each mixture.} \RealEnr {FLUX-NORM\blank{3}}{$1$}{$1$} {Flux normalization constant. It is zero for out of core depletion and represents the normalization of the flux $\phi_{r}^{g}$ that is used to ensure that the cell integrated flux or power is that required when fixed flux or power burnup is requested} \RealEnr {ENERG-MIX\blank{3}}{$N_m$}{$10^{-8}$ J} {Energy realeased during the time step in each mixture} \OptRealEnr {FORM-POWER\blank{2}}{1}{$I_{t}=3$}{1} {Ratio of the global power released in the complete geometry divided by the power released in fuel.} \RealEnr {BURNUP-IRRAD}{$2$}{} {Fuel burnup (MW d T$^{-1}$) and irradiation (Kb$^{-1}$) reached at this time step} \end{DescriptionEnregistrement} \eject