\subsection{The \moc{bivact} dependent records on a \dir{tracking} directory}\label{sect:bivactrackingdir} When the \moc{BIVACT:} operator is used ($\mathsf{CDOOR}$={\tt 'BIVAC'}), the following elements in the vector $\mathcal{S}^{t}_{i}$ will also be defined. \begin{itemize} \item $\mathcal{S}^{t}_{6}$: ({\tt ITYPE}) Type of BIVAC geometry: \begin{displaymath} \mathcal{S}^{t}_{6} = \left\{ \begin{array}{rl} 2 & \textrm{Cartesian 1-D geometry} \\ 3 & \textrm{Tube 1-D geometry} \\ 4 & \textrm{Spherical 1-D geometry} \\ 5 & \textrm{Cartesian 2-D geometry} \\ 6 & \textrm{Tube 2-D geometry} \\ 8 & \textrm{Hexagonal 2-D geometry} \end{array} \right. \end{displaymath} \item $\mathcal{S}^{t}_{7}$: ({\tt IHEX}) Type of hexagonal symmetry if $\mathcal{S}^{t}_{6}= 8$: \begin{displaymath} \mathcal{S}^{t}_{7} = \left\{ \begin{array}{rl} 0 & \textrm{non-hexagonal geometry} \\ 1 & \textrm{S30} \\ 2 & \textrm{SA60} \\ 3 & \textrm{SB60} \\ 4 & \textrm{S90} \\ 5 & \textrm{R120} \\ 6 & \textrm{R180} \\ 7 & \textrm{SA180} \\ 8 & \textrm{SB180} \\ 9 & \textrm{COMPLETE} \end{array} \right. \end{displaymath} \item $\mathcal{S}^{t}_{8}$: ({\tt IELEM}) Type of finite elements: \begin{displaymath} \mathcal{S}^{t}_{8} = \left\{ \begin{array}{rl} <0 & \textrm{Order $-\mathcal{S}^{t}_{8}$ primal finite elements} \\ >0 & \textrm{Order $\mathcal{S}^{t}_{8}$ dual finite elements. The Thomas-Raviart or Thomas-Raviart-Schneider} \\ & \textrm{method is used except if $\mathcal{S}^{t}_{9}=4$ in which case a mesh-centered finite difference} \\ & \textrm{approximation is used} \end{array} \right. \end{displaymath} \item $\mathcal{S}^{t}_{9}$: ({\tt ICOL}) Type of quadrature used to integrate the mass matrix: \begin{displaymath} \mathcal{S}^{t}_{9} = \left\{ \begin{array}{rl} 1 & \textrm{Analytical integration} \\ 2 & \textrm{Gauss-Lobatto quadrature (finite difference/collocation method)} \\ 3 & \textrm{Gauss-Legendre quadrature (superconvergent approximation)} \\ 4 & \textrm{mesh-centered finite difference approximation in hexagonal geometry} \end{array} \right. \end{displaymath} \item $\mathcal{S}^{t}_{10}$: ({\tt ISPLH}) Type of hexagonal mesh splitting: \begin{displaymath} \mathcal{S}^{t}_{10} = \left\{ \begin{array}{rl} 1 & \textrm{No mesh splitting}; \emph{or} \\ & \textrm{$3$ lozenges per hexagon with Thomas-Raviart-Schneider approximation} \\ K & \textrm{$6\times(K-1)\times(K-1)$ triangles per hexagon with finite-difference approximations} \\ & \textrm{$3\times K \times K$ lozenges per hexagon with Thomas-Raviart-Schneider approximation} \end{array} \right. \end{displaymath} \item $\mathcal{S}^{t}_{11}$: ({\tt LL4}) Order of the group-wise matrices. Generally equal to $\mathcal{S}^{t}_{2}$ except in cases where averaged fluxes are appended to the unknown vector. $\mathcal{S}^{t}_{11}\le\mathcal{S}^{t}_{2}$. \item $\mathcal{S}^{t}_{12}$: ({\tt LX}) Number of elements along the $X$ axis in Cartesian geometry or number of hexagons. \item $\mathcal{S}^{t}_{13}$: ({\tt LY}) Number of elements along the $Y$ axis. \item $\mathcal{S}^{t}_{14}$: ({\tt NLF}) Number of components in the angular expansion of the flux. Must be a positive even number. Set to zero for diffusion theory. Set to 2 for $P_1$ method. \item $\mathcal{S}^{t}_{15}$: ({\tt ISPN}) Type of transport approximation if {\tt NLF}$\ne 0$: \begin{displaymath} \mathcal{S}^{t}_{15} = \left\{ \begin{array}{rl} 0 & \textrm{Complete $P_n$ approximation of order {\tt NLF}$-1$} \\ 1 & \textrm{Simplified $P_n$ approximation of order {\tt NLF}$-1$} \end{array} \right. \end{displaymath} \item $\mathcal{S}^{t}_{16}$: ({\tt ISCAT}) Number of terms in the scattering sources if {\tt NLF}$\ne 0$: \begin{displaymath} \mathcal{S}^{t}_{16} = \left\{ \begin{array}{rl} 1 & \textrm{Isotropic scattering in the laboratory system} \\ 2 & \textrm{Linearly anisotropic scattering in the laboratory system} \\ $n$ & \textrm{order $n-1$ anisotropic scattering in the laboratory system} \end{array} \right. \end{displaymath} \noindent A negative value of $\mathcal{S}^{t}_{16}$ indicates that $1/3D^{g}$ values are used as $\Sigma_1^{g}$ cross sections. \item $\mathcal{S}^{t}_{17}$: ({\tt NVD}) Number of base points in the Gauss-Legendre quadrature used to integrate void boundary conditions if {\tt ICOL} $=3$ and {\tt NLF}$\ne 0$: \begin{displaymath} \mathcal{S}^{t}_{17} = \left\{ \begin{array}{rl} 0 & \textrm{Use a ({\tt NLF}$+1$)--point quadrature consistent with $P_{{\rm NLF}-1}$ theory} \\ 1 & \textrm{Use a {\tt NLF}--point quadrature consistent with $S_{\rm NLF}$ theory} \\ 2 & \textrm{Use an analytical integration consistent with diffusion theory} \end{array} \right. \end{displaymath} \end{itemize} \goodbreak The following records will also be present on the main level of a \dir{tracking} directory. \begin{DescriptionEnregistrement}{The \moc{bivact} records in \dir{tracking}}{8.0cm} \IntEnr {NCODE\blank{7}}{$6$} {Record containing the types of boundary conditions on each surface. =0 side not used; =1 VOID; =2 REFL; =4 TRAN; =5 SYME; =7 ZERO. {\tt NOODE(5)} and {\tt NOODE(6)} are not used.} \RealEnr {ZCODE\blank{7}}{$6$}{$1$} {Record containing the albedo value (real number) on each surface. {\tt ZOODE(5)} and {\tt ZOODE(6)} are not used.} \OptRealEnr {SIDE\blank{8}}{$1$}{$\mathcal{S}^{t}_{6}=8$}{cm} {Side of a hexagon.} \OptRealEnr {XX\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}\ne 8$}{cm} {Element-ordered $X$-directed mesh spacings after mesh-splitting for type 2 and 5 geometries. Element-ordered radius after mesh-splitting for type 3 and 6 geometries.} \OptRealEnr {YY\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=5 \ {\rm or} \ 6$}{cm} {Element-ordered $Y$-directed mesh spacings after mesh-splitting for type 5 and 6 geometries.} \OptRealEnr {DD\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=3 \ {\rm or} \ 6$}{cm} {Element-ordered position used with type 3 and 6 geometries.} \IntEnr {KN\blank{10}}{$N_{\rm kn}\times\mathcal{S}^{t}_{1}$} {Element-ordered unknown list. $N_{\rm kn}$ is the number of unknowns per element.} \RealEnr {QFR\blank{9}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}{} {Element-ordered boundary condition. $N_{\rm surf}=4$ in Cartesian geometry and $=6$ in hexagonal geometry.} \IntEnr {IQFR\blank{8}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$} {Element-ordered physical albedo indices. $N_{\rm surf}=4$ in Cartesian geometry and $=6$ in hexagonal geometry.} \RealEnr {BFR\blank{9}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}{} {Element-ordered boundary surface fractions.} \IntEnr {MU\blank{10}}{$\mathcal{S}^{t}_{11}$} {Indices used with compressed diagonal storage mode matrices.} \OptIntEnr {IPERT\blank{7}}{$\mathcal{S}^{t}_{12}\times (\mathcal{S}^{t}_{10})^2$}{*} {Mixture permutation index. This information is provided if and only if $\mathcal{S}^{t}_{6}=8, \ \mathcal{S}^{t}_{8}>0 \ {\rm and} \ \mathcal{S}^{t}_{9}\le 3$.} \DirEnr {BIVCOL\blank{6}} {Sub-directory containing the unit matrices (mass, stiffness, nodal coupling, etc.) for a finite element discretization.} \end{DescriptionEnregistrement} \goodbreak The following records will be present on the \moc{/BIVCOL/} sub-directory: \begin{DescriptionEnregistrement}{Description of the \moc{/BIVCOL/} sub-directory}{8.0cm} \RealEnr {T\blank{11}}{$L$}{} {Cartesian linear product vector. $L=|\mathcal{S}^{t}_{8}|+1$} \RealEnr {TS\blank{10}}{$L$}{} {Cylindrical linear product vector.} \RealEnr {R\blank{11}}{$L\times L$}{} {Cartesian mass matrix.} \RealEnr {RS\blank{10}}{$L\times L$}{} {Cylindrical mass matrix.} \RealEnr {Q\blank{11}}{$L\times L$}{} {Cartesian stiffness matrix.} \RealEnr {QS\blank{10}}{$L\times L$}{} {Cylindrical stiffness matrix.} \RealEnr {V\blank{11}}{$L\times (L-1)$}{} {Nodal coupling matrix.} \RealEnr {H\blank{11}}{$L\times (L-1)$}{} {Piolat transform coupling matrix (used with Thomas-Raviart-Schneider method).} \RealEnr {E\blank{11}}{$L\times L$}{} {Polynomial coefficients.} \RealEnr {RH\blank{10}}{6$\times$6}{} {Hexagonal mass matrix.} \RealEnr {QH\blank{10}}{6$\times$6}{} {Hexagonal stiffness matrix.} \RealEnr {RT\blank{10}}{3$\times$3}{} {Triangular mass matrix.} \RealEnr {QT\blank{10}}{3$\times$3}{} {Triangular stiffness matrix.} \end{DescriptionEnregistrement} \eject