\subsubsection{The \moc{sybilt} dependent records on a \moc{GROUP} directory}\label{sect:SYBILgrpdiringdir} This information is provided only if the current iteration method of the interface current method is used in SYBIL. This occurs if the key-word {\tt ARM} is been used in operators {\tt USS:} or {\tt ASM:}. In these cases, the following records will also be found on the \moc{GROUP} directory: \vskip 0.2cm The following dimensions will be used: \begin{description} \item[Number of generating cells:] $~$ \begin{displaymath} \mathcal{N}_{\rm gen} = \left\{ \begin{array}{rll} \mathcal{P}_1 & \textrm{if~} \mathcal{S}_6^t=3 & \textrm{(do-it-yourself geometry)} \\ \mathcal{P}_6 & \textrm{if~} \mathcal{S}_6^t=4 & \textrm{(2D assembly geometry)} \end{array} \right. \end{displaymath} \item[Number of entering currents in a cell:] $~$ \begin{displaymath} N_c = \left\{ \begin{array}{rll} 4 & \textrm{if~} \mathcal{P}_1^t=0 \textrm{~and~} 2\le\mathcal{P}_2^t\le 3 & \textrm{($DP_0$ Cartesian cell)} \\ 12 & \textrm{if~} \mathcal{P}_1^t=0 \textrm{~and~} \mathcal{P}_2^t=4 & \textrm{($DP_1$ Cartesian cell)} \\ 6 & \textrm{if~} \mathcal{P}_1^t>0 \textrm{~and~} 2\le\mathcal{P}_2^t\le 3 & \textrm{($DP_0$ hexagonal cell)} \\ 18 & \textrm{if~} \mathcal{P}_1^t>0 \textrm{~and~} \mathcal{P}_2^t=4 & \textrm{($DP_1$ hexagonal cell)} \end{array} \right. \end{displaymath} \item[Number of transmission probability elements:] $~$ \begin{displaymath} D_1 = \left\{ \begin{array}{rll} \mathcal{P}_1 & \textrm{if~} \mathcal{S}_6^t=3 & \textrm{(do-it-yourself geometry)} \\ \mathcal{P}_6 & \textrm{if~} \mathcal{S}_6^t=4 \textrm{~and~} {\mathcal{P}_2=1} & \textrm{(Roth 2D assembly geometry)} \\ N_c \times N_c \times \mathcal{P}_6 & \textrm{if~} \mathcal{S}_6^t=4 \textrm{~and~} {\mathcal{P}_2\ge 2} & \textrm{(Other 2D assembly geometries)} \\ \end{array} \right. \end{displaymath} \item[Number of escape probability elements:] $~$ \begin{displaymath} D_2 = \left\{ \begin{array}{rll} {\tt NMC}(\mathcal{P}_1+1) & \textrm{if~} \mathcal{S}_6^t=3 & \textrm{(do-it-yourself geometry)} \\ {\tt NMC}(\mathcal{P}_6+1) & \textrm{if~} \mathcal{S}_6^t=4 \textrm{~and~} {\mathcal{P}_2=1} & \textrm{(Roth 2D assembly geometry)} \\ N_c \times {\tt NMC}(\mathcal{P}_6+1) & \textrm{if~} \mathcal{S}_6^t=4 \textrm{~and~} {\mathcal{P}_2\ge 2} & \textrm{(Other 2D assembly geometries)} \\ \end{array} \right. \end{displaymath} \item[Number of collision probability elements:] $~$ \begin{displaymath} D_3 = \sum\limits_{i=1}^{\mathcal{N}_{\rm gen}}[{\tt NMC}(i+1)-{\tt NMC}(i)]^2 \end{displaymath} \end{description} \begin{DescriptionEnregistrement}{SYBIL groupwise assembly information in \moc{GROUP}}{7.0cm} \RealEnr {PSSW\$SYBIL\blank{2}}{$\mathcal{D}_1$}{} {Cellwise scattering-reduced transmission probabilities.} \RealEnr {PISW\$SYBIL\blank{2}}{$\mathcal{D}_2$}{} {Cellwise scattering-reduced escape probabilities.} \RealEnr {PSJW\$SYBIL\blank{2}}{$\mathcal{D}_2$}{} {Cellwise scattering-reduced collision probabilities for incoming neutrons.} \RealEnr {PIJW\$SYBIL\blank{2}}{$\mathcal{D}_3$}{} {Cellwise scattering-reduced collision probabilities.} \end{DescriptionEnregistrement} \eject