\subsection{Contents of \dir{matex} data structure}\label{sect:matex} \vskip 0.2cm A \dir{matex} data structure is used to store several information related to the reactor extended material index and geometry. This object has a signature {\tt L\_MATEX}; it is created using the \moc{USPLIT:} module. The information contained in this data structure can be used and updated in other DONJON modules. \subsubsection{The state-vector content}\label{sect:matexstate} \noindent The dimensioning parameters $\mathcal{S}_i$, which are stored in the state vector for this data structure, represent: \begin{itemize} \item The number of energy groups $N_{gr} = \mathcal{S}_1$ \item The maximum number of material mixtures $N_m = \mathcal{S}_2$ ($N_m$ equals to the total \\ number of material regions plus the number of device mixtures) \item The number of reflector types $N_r = \mathcal{S}_3$ \item The number of fuel types $N_f = \mathcal{S}_4$ \item The total number of mixtures indices $N_{tot} = \mathcal{S}_5$ ($N_{tot}$ equals to the total \\ number of mesh-splitted volumes plus the number of device mixtures) \item The type of reactor geometry $I_g = \mathcal{S}_6$ (only $I_g=7$ for \dusa{3D}-Cartesian geometry or $I_g=9$ for \dusa{3D}-Hexagonal geometry are allowed) \item The total number of mesh-splitted volumes $N_{el} = \mathcal{S}_7$ \item The number of mesh-splitted volumes along x-axis $L_x = \mathcal{S}_8$ \item The number of mesh-splitted volumes along y-axis $L_y = \mathcal{S}_9$ \item The number of mesh-splitted volumes along z-axis $L_z = \mathcal{S}_{10}$ \end{itemize} \subsubsection{The \dir{matex} directory}\label{sect:matexdir} \noindent The following records will be found on the \dir{matex} directory: \begin{DescriptionEnregistrement}{Records in \dir{matex} data structure}{7cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {Signature of the \dir{matex} data structure ($\mathsf{SIGNA}=${\tt L\_MATEX\blank{5}}).} \IntEnr {STATE-VECTOR}{$40$} {Vector describing the various parameters associated with this data structure $\mathcal{S}_i$} \IntEnr {RMIX\blank{8}}{$N_r$} {The reflector-type mixture indices, as defined in the reactor geometry.} \IntEnr {RTOT\blank{8}}{$N_r$} {The total number of reflector regions per each reflector type.} \IntEnr {FMIX\blank{8}}{$N_f$} {The fuel-type mixture indices, as defined in the reactor geometry.} \IntEnr {FTOT\blank{8}}{$N_f$} {The total number of fuel regions per each fuel type.} \IntEnr {MAT\blank{9}}{$N_{tot}$} {The material mixture indices per each region and including the device mixtures. The fuel-type indices are set negative; the device indices are appended at the end of vector; the virtual-region indices are set to 0.} \IntEnr {INDEX\blank{7}}{$N_{el}$} {The renumbered mixture indices. A unique number is associated with each mesh-splitted volume. The device indices are not included; the virtual-region indices are set to 0.} \RealEnr {MESHX\blank{7}}{$L_x+1$}{} {The mesh-splitted coordinates along x-axis of the reactor geometry.} \RealEnr {MESHY\blank{7}}{$L_y+1$}{} {The mesh-splitted coordinates along y-axis of the reactor geometry.} \RealEnr {MESHZ\blank{7}}{$L_z+1$}{} {The mesh-splitted coordinates along z-axis of the reactor geometry.} \RealEnr {H-FACTOR\blank{4}}{$N_m, N_{gr}$}{} {The h-factors per each mixture and per each energy group, as recovered from the extended \dir{macrolib} data structure.} \end{DescriptionEnregistrement} \clearpage