\subsection{The \texttt{LNSR:} module} The {\tt LNSR:} module performs a single iteration of the line search algorithm, used as inner iteration of steepest descent, conjugate gradient or quasi-Newton optimization techniques.\cite{recipie} The Armijo line search algorithm is used.\cite{armijo} The {\tt LNSR:} module is generally used inside an inner loop, as depicted in Fig~\ref{fig:fig_lnsr}. \vskip 0.2cm \begin{figure}[h!] \begin{center} \includegraphics[scale=0.85]{Figures/lnsr.eps} \caption{Line search iterations.}\label{fig:fig_lnsr} \end{center} \end{figure} The calling specifications are: \begin{DataStructure}{Structure \moc{LNSR:}} \dusa{OPTIM} \moc{:=} \moc{LNSR:} \dusa{OPTIM} \moc{::} \dstr{lnsr\_data} \end{DataStructure} \noindent where \begin{ListeDeDescription}{mmmmmmmm} \item[\dusa{OPTIM}] \texttt{character*12} name of the \dds{optimize} object ({\tt L\_OPTIMIZE} signature) containing the optimization informations. Object \dusa{OPTIM} must appear on both LHS and RHS to be able to update the previous values. \item[\dstr{lnsr\_data}] structure containing the data to the module \texttt{LNSR:} (see Sect.~\ref{sect:lnsr_data}). \end{ListeDeDescription} \vskip 0.2cm \goodbreak \subsubsection{Data input for module \texttt{LNSR:}}\label{sect:lnsr_data} \begin{DataStructure}{Structure \moc{lnsr\_data}} $[$ \moc{EDIT} \dusa{iprint} $]$ \\ $[~\{$ \moc{MAXIMIZE} $|$ \moc{MINIMIZE} $\}~]$ \\ $[$ \moc{OUT-STEP-LIM} \dusa{sr} $]$ \\ $[$ \moc{OUT-STEP-EPS} \dusa{$\epsilon_{ext}$} $]~[$ \moc{INN-STEP-EPS} \dusa{$\epsilon_{inn}$} $]$ \\ \moc{OUT-ITER-MAX} \dusa{maxE} \\ $[$ \moc{OUT-RESTART} \dusa{nstart} $]$ \\ $[~\{$ \moc{SD} $|$ \moc{CG} $|$ \moc{BFGS} $|$ \moc{LBFGS} $[$ \moc{hist\_nr} $]~|$ \moc{NEWT} $\}~]$ \\ $[$ \moc{INN-CONV-TST} {\tt >>} \dusa{$l_{convI}$} {\tt <<} \moc{OUT-CONV-TST} {\tt >>} \dusa{$l_{convE}$} {\tt <<} $]$ \\ ; \end{DataStructure} \noindent where \begin{ListeDeDescription}{mmmmmmmm} \item[\moc{EDIT}] keyword used to set \dusa{iprint}. \item[\dusa{iprint}] index used to control the printing in module. \item[\moc{MAXIMIZE}] keyword used to specify that the optimization problem will be a maximization. \item[\moc{MINIMIZE}] keyword used to specify that the optimization problem will be a minimization (default). \item[\moc{OUT-STEP-LIM}] keyword used to set or reset the maximum stepsize for the line search (default value is \dusa{sr} $=1.0$ or the value recovered from \dusa{OPTIM}). \item[\dusa{sr}] initial radius of the stepsize (real or double precision). \item[\moc{OUT-STEP-EPS}] keyword used to set the tolerance of outer iteration convergence inside module {\tt LNSR:} (default value is $1.0 \times 10^{-4}$). \item[\dusa{$\epsilon_{ext}$}] tolerance value (real or double precision). \item[\moc{INN-STEP-EPS}] keyword used to set the tolerance used for the line search algorithm (default value is $1.0 \times 10^{-4}$). \item[\dusa{$\epsilon_{inn}$}] tolerance value (real or double precision). \item[\moc{OUT-ITER-MAX}] keyword used to set the maximum number of external iterations. \item[\dusa{maxE}] maximum number of external iterations. \item[\moc{OUT-RESTART}] keyword used to set the external iteration restart cycle. A new recursion cycle is restarted from the conjugate gradient method. By default, no restart is performed. \item[\dusa{nstart}] number of iterations in one external iteration restart cycle. \item[\moc{SD}] steepest descent method (default option). \item[\moc{CG}] conjugate gradient method. \item[\moc{BFGS}] Broyden-Fletcher-Goldfarb-Shanno method.\cite{recipie} \item[\moc{LBFGS}] Memory limited Broyden-Fletcher-Goldfarb-Shanno method.\cite{nocedal} \item[\dusa{hist\_nr}] number of corrections used in the memory limited Broyden-Fletcher-Goldfarb-Shanno method (default value is 10). \item[\moc{NEWT}] Newton method for unconstrained optimization.\cite{sph1981} \item[\moc{INN-CONV-TST}] keyword used to determine if the line search convergence has been reached. \item[\dusa{$l_{convI}$}] $=1$ means that line search convergence has been reached; $=0$ otherwise. \item[\moc{OUT-CONV-TST}] keyword used to determine if the external convergence has been reached. \item[\dusa{$l_{convI}$}] $=1$ means that external convergence has been reached; $=0$ otherwise. \end{ListeDeDescription} \clearpage