\subsection{The \moc{IDET:} module}\label{sect:idet} \vskip 0.2cm The \moc{IDET:} module can perform an evaluation of fission chamber response in a PWR by integrating the fission rate over the detector positions. This module is limited to Cartesian geometry. \vskip 0.08cm \noindent The \moc{IDET:} module specification is: \begin{DataStructure}{Structure \moc{IDET:}}\label{table:tidet} \dusa{IDETEC} \moc{:=} \moc{IDET:} $[$ \dusa{IDETEC} $]$ \dusa{TRKNAM} \dusa{FLUNAM} \dusa{LIBNAM} $[$ \dusa{FMAP} $]$ \\ \moc{::} \dstr{descidet} \end{DataStructure} \noindent where \begin{ListeDeDescription}{mmmmmmmm} \item[\dusa{IDETEC}] {\tt character*12} name of a \dds{idetect} data structure, ({\tt L\_INTDETEC} signature) that will be created or updated by the \moc{IDET:} module. \item[\dusa{TRKNAM}] {\tt character*12} name of the read-only \dds{tracking} data structure ({\tt L\_TRACK} signature) containing the finite-element tracking. \item[\dusa{FLUNAM}] {\tt character*12} name of the read-only \dds{fluxunk} data structure ({\tt L\_FLUX} signature) containing the finite-element solution. \item[\dusa{LIBNAM}] {\tt character*12} name of the read-only \dds{macrolib} data structure ({\tt L\_LIBRARY} signature) that contains the interpolated microscopic cross sections. \item[\dusa{FMAP}] \texttt{character*12} name of the read-only \dds{fmap} data structure ({\tt L\_MAP} signature) containing renumbered mixture indices. This object is optionnal. \item[\dstr{descidet}] structure describing the input data to the \moc{IDET:} module. \end{ListeDeDescription} \subsubsection{Input data to the \moc{IDET:} module}\label{sect:stridet} \begin{DataStructure}{Structure \dstr{descidet}} $[$ \moc{EDIT} \dusa{iprint} $]$ \\ $[~\{$ \moc{NOCCOR} $|$ \moc{CCOR} $\}~]$ \\ $[$ \moc{DETNAME} \dusa{dname} $]~[$ \moc{REANAME} \dusa{rname} $]$ \\ \moc{DETECTOR} \\ \hspace{0.3cm} $[[$ \moc{POSITION} $\{$ \dusa{valx} $|$ \moc{INTEG} \dusa{valx1} \dusa{valx2} $\}~\{$ \dusa{valy} $|$ \moc{INTEG} \dusa{valy1} \dusa{valy2} $\}$ \\ \hspace{2.02cm} $[~\{$ \dusa{valz} $|$ \moc{INTEG} \dusa{valz1} \dusa{valz2} $\}~]~]]$ \\ \moc{ENDD} \\ ; \end{DataStructure} \noindent where \begin{ListeDeDescription}{mmmmmmmm} \item[\moc{EDIT}] keyword used to set \dusa{iprint}. \item[\dusa{iprint}] integer index used to control the printing on screen: = 0 for no print; = 1 for minimum printing (default value); =2 for more printouts. \item[\moc{NOCCOR}] keyword used to deactivate {\sl corner flux correction} with 2D/3D nodal methods. \item[\moc{CCOR}] keyword used to activate {\sl corner flux correction} with 2D/3D nodal methods (default option). \item[\moc{DETNAME}] keyword used to set \dusa{dname}, the alias name of the isotope used as detector. By default, \dusa{dname}$=${\tt U235} is used. \item[\dusa{dname}] character*12 alias name of the isotope used as detector. \item[\moc{REANAME}] keyword used to set \dusa{rname}, the name of the nuclear reaction used as detector. By default, \dusa{rname}$=${\tt NFTOT} is used. \item[\dusa{rname}] character*12 name of the nuclear reaction used as detector. \item[\moc{POSITION}] keyword defining the position of a single detector. \item[\moc{INTEG}] keyword indicating that the detector reading will be averaged between two Cartesian positions. \item[\dusa{valx}] position (real number) of the detector along $X$ axis. \item[\dusa{valx1}] starting position (real number) of the detector along $X$ axis. \item[\dusa{valx2}] ending position (real number) of the detector along $X$ axis. We must have \dusa{valx1}$<$\dusa{valx2}. \item[\dusa{valy}] position (real number) of the detector along $Y$ axis. \item[\dusa{valy1}] starting position (real number) of the detector along $Y$ axis. \item[\dusa{valy2}] ending position (real number) of the detector along $Y$ axis. We must have \dusa{valy1}$<$\dusa{valy2}. \item[\dusa{valz}] position (real number) of the detector along $Z$ axis. Detector position along $Z$ axis is given only for 3D geometries. \item[\dusa{valz1}] starting position (real number) of the detector along $Z$ axis. \item[\dusa{valz2}] ending position (real number) of the detector along $Z$ axis. We must have \dusa{valz1}$<$\dusa{valz2}. \end{ListeDeDescription} \clearpage