\subsection{Contents of \dir{thm} data structure}\label{sect:thmdir} This data structure contains the thermal-hydraulics information required in a multi-physics calculation \subsubsection{The main \dir{thm} directory}\label{sect:thmdirmain} The following records and sub-directories will be found in the first level of a \dir{thm} directory: \begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{thm}}{8.0cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {parameter $\mathsf{SIGNA}$ containing the signature of the data structure} \IntEnr {STATE-VECTOR}{$40$} {array $\mathcal{S}^{th}_{i}$ containing various integer parameters that are required to describe this data structure} \RealEnr {REAL-PARAM\blank{2}}{$40$}{} {array $\mathcal{R}^{th}_{i}$ containing various floating-point parameters that are required to describe this data structure} \RealEnr {MESHZ\blank{7}}{$\mathcal{S}^{th}_{1}$}{m} {initial axial meshes as recovered from the fuelmap} \RealEnr {REF-RAD\blank{5}}{$(\mathcal{S}^{th}_{7}-1)\times\mathcal{S}^{th}_{1}$}{m} {initial radial meshes as recovered from the first call to {\tt THM:} module} \RealEnr {NB-FUEL\blank{5}}{$\mathcal{S}^{th}_{2}$}{} {number of active fuel rods in a single assembly or number of active fuel pins in the cluster} \RealEnr {NB-TUBE\blank{5}}{$\mathcal{S}^{th}_{2}$}{} {number of active guide tubes in a single assembly} \RealEnr {FRACT-PU\blank{4}}{$\mathcal{S}^{th}_{2}$}{} {plutonium mass enrichment} \OptRealEnr {KCONDF\blank{6}}{$\mathcal{S}^{th}_{16}+3$}{$\mathcal{S}^{th}_{12}\ne 0$}{} {coefficients of the user-defined correlation for the fuel thermal conductivity} \OptCharEnr {UCONDF\blank{6}}{$12$}{$\mathcal{S}^{th}_{12}\ne 0$} {string variable set to {\tt KELVIN} or to {\tt CELSIUS}} \OptRealEnr {KCONDC\blank{6}}{$\mathcal{S}^{th}_{17}+3$}{$\mathcal{S}^{th}_{13}\ne 0$}{} {coefficients of the user-defined correlation for the clad thermal conductivity} \OptCharEnr {UCONDC\blank{6}}{$12$}{$\mathcal{S}^{th}_{13}\ne 0$} {string variable set to {\tt KELVIN} or to {\tt CELSIUS}} \RealEnr {ERROR-T-FUEL}{1}{K} {absolute error in fuel temperature} \RealEnr {ERROR-D-COOL}{1}{g/cc} {absolute error in coolant density} \RealEnr {ERROR-T-COOL}{1}{K} {absolute error in coolant temperature} \RealEnr {ERROR-P-COOL}{1}{Pa} {absolute error in coolant pressure} \RealEnr {MIN-T-FUEL\blank{2}}{1}{K} {minimum fuel temperature} \RealEnr {MIN-D-COOL\blank{2}}{1}{g/cc} {minimum coolant density} \RealEnr {MIN-T-COOL\blank{2}}{1}{K} {minimum coolant temperature} \RealEnr {MIN-P-COOL\blank{2}}{1}{Pa} {minimum coolant pressure} \RealEnr {MAX-T-FUEL\blank{2}}{1}{K} {maximum fuel temperature} \RealEnr {MAX-D-COOL\blank{2}}{1}{g/cc} {maximum coolant density} \RealEnr {MAX-T-COOL\blank{2}}{1}{K} {maximum coolant temperature} \RealEnr {MAX-P-COOL\blank{2}}{1}{Pa} {maximum coolant pressure} \DirEnr {HISTORY-DATA} {sub-directory containing the historical values taken by the thermal-hydraulics parameters (mass flux, density, pressure, enthalpy, temperature) in the coolant and in the fuel rod for the whole geometry} \OptRealEnr {RAD-PROF\_R\blank{2}}{$\mathcal{S}^{th}_{18}$}{$\mathcal{S}^{th}_{18}\ne 0$}{m} {abscissas of the user-defined radial form factor table} \OptRealEnr {RAD-PROF\_F\blank{2}}{$\mathcal{S}^{th}_{18}$}{$\mathcal{S}^{th}_{18}\ne 0$}{ } {form-factor values of the user-defined radial form factor table} \OptRealEnr {TIME-SR1\blank{2}}{$\mathcal{S}^{th}_{19}$}{$\mathcal{S}^{th}_{19}\ne 0$}{s} {tabulation abscissa in time} \OptRealEnr {POWER-SR1\blank{2}}{$\mathcal{S}^{th}_{19}$}{$\mathcal{S}^{th}_{19}\ne 0$}{ } {tabulation power factor corresponding to each tabulation abscissa in time} \end{DescriptionEnregistrement} The signature for this data structure is $\mathsf{SIGNA}$=\verb*|L_THM|. The array $\mathcal{S}^{h}_{i}$ contains the following information: \begin{itemize} \item $\mathcal{S}^{th}_{1}$ contains the number of axial meshes $N_{\rm z}$. \item $\mathcal{S}^{th}_{2}$ contains the number of channels in the radial plane $N_{\rm ch}$. \item $\mathcal{S}^{th}_{3}$ contains the maximum number of iterations for computing the conduction integral. \item $\mathcal{S}^{th}_{4}$ contains the maximum number of iterations for computing the center pellet temperature. \item $\mathcal{S}^{th}_{5}$ contains the maximum number of iterations for computing the coolant parameters (velocity, pressure, enthapy, density) in case of a transient calculation. \item $\mathcal{S}^{th}_{6}$ contains the number of discretisation points in fuel. \item $\mathcal{S}^{th}_{7}$ contains the number of total discretisation points in the whole fuel rod (fuel+cladding) $N_{\rm dtot}$. \item $\mathcal{S}^{th}_{8}$ contains the type of calculation performed by the \moc{THM:} module: \begin{displaymath} \mathcal{S}^{th}_{8} = \left\{ \begin{array}{rl} 0 & \textrm{steady-state calculation} \\ 1 & \textrm{transient calculation.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{9}$ contains the current time index. \item $\mathcal{S}^{th}_{10}$ flag to set the gap correlation: \begin{displaymath} \mathcal{S}^{th}_{10} = \left\{ \begin{array}{rl} 0 & \textrm{built-in correlation is used} \\ 1 & \textrm{set the heat exchange coefficient of the gap as a user-defined constant.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{11}$ flag to set the heat transfer coefficient between the clad and fluid: \begin{displaymath} \mathcal{S}^{th}_{11} = \left\{ \begin{array}{rl} 0 & \textrm{built-in correlation is used} \\ 1 & \textrm{set the heat exchange coefficient between the clad and fluid as a user-defined constant.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{12}$ flag to set the fuel thermal conductivity: \begin{displaymath} \mathcal{S}^{th}_{12} = \left\{ \begin{array}{rl} 0 & \textrm{built-in correlation is used} \\ 1 & \textrm{set the fuel thermal conductivity as a function of a simple user-defined correlation.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{13}$ flag to set the clad thermal conductivity: \begin{displaymath} \mathcal{S}^{th}_{13} = \left\{ \begin{array}{rl} 0 & \textrm{built-in correlation is used} \\ 1 & \textrm{set the clad thermal conductivity as a function of a simple user-defined correlation.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{14}$ type of approximation used during the fuel conductivity evaluation: \begin{displaymath} \mathcal{S}^{th}_{14} = \left\{ \begin{array}{rl} 0 & \textrm{use a rectangle quadrature approximation} \\ 1 & \textrm{use an average approximation.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{15}$ type of subcooling model: \begin{displaymath} \mathcal{S}^{th}_{15} = \left\{ \begin{array}{rl} 0 & \textrm{use the Bowring correlation} \\ 1 & \textrm{use the Saha-Zuber correlation.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{16}$ contains the number of terms in the user-defined correlation for the fuel thermal conductivity (if $\mathcal{S}^{th}_{12}=1$). \item $\mathcal{S}^{th}_{17}$ contains the number of terms in the user-defined correlation for the clad thermal conductivity (if $\mathcal{S}^{th}_{13}=1$). \item $\mathcal{S}^{th}_{18}$ type of radial form factor for the power: \begin{displaymath} \mathcal{S}^{th}_{18} = \left\{ \begin{array}{rl} 0 & \textrm{flat radial form factor} \\ N_{\rm rad} & \textrm{number of point in the radial form factor table.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{19}$ number of points in the user-defined time-power table. \item $\mathcal{S}^{th}_{20}$ type of fluid: \begin{displaymath} \mathcal{S}^{th}_{20} = \left\{ \begin{array}{rl} 0 & \textrm{light water (H$_2$O)} \\ 1 & \textrm{heavy water (D$_2$O).} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{21}$ flag indicating if the gap is considered: \begin{displaymath} \mathcal{S}^{th}_{21} = \left\{ \begin{array}{rl} 0 & \textrm{gap is considered} \\ 1 & \textrm{is not.} \\ \end{array} \right. \end{displaymath} \item $\mathcal{S}^{th}_{22}$ flag indicating the pressure drop option: \begin{displaymath} \mathcal{S}^{th}_{22} = \left\{ \begin{array}{rl} 0 & \textrm{no pressure drop} \\ 1 & \textrm{pressure drop is computed.} \\ \end{array} \right. \end{displaymath} \end{itemize} The array $\mathcal{R}^{th}_{i}$ contains the following information: \begin{itemize} \item $\mathcal{R}^{th}_{1}$ contains the current time step in s. \item $\mathcal{R}^{th}_{2}$ contains the fraction of reactor power released in fuel. \item $\mathcal{R}^{th}_{3}$ contains the critical heat flux in W/m$^2$. \item $\mathcal{R}^{th}_{4}$ contains the inlet coolant velocity in m/s. \item $\mathcal{R}^{th}_{5}$ contains the outlet coolant pressure in Pa. \item $\mathcal{R}^{th}_{6}$ contains the inlet coolant temperature in K. \item $\mathcal{R}^{th}_{7}$ contains the fuel porosity. \item $\mathcal{R}^{th}_{8}$ contains the fuel pellet radius \item $\mathcal{R}^{th}_{9}$ contains the internal clad rod radius in m. \item $\mathcal{R}^{th}_{10}$ contains the external clad rod radius in m. \item $\mathcal{R}^{th}_{11}$ contains the guide tube radius in m. \item $\mathcal{R}^{th}_{12}$ contains the hexagonal side in m. Used only for cluster geometries. \item $\mathcal{R}^{th}_{13}$ contains the temperature maximum absolute error (in K) allowed in the solution of the conduction equations. \item $\mathcal{R}^{th}_{14}$ contains the maximum relative error allowed in the matrix resolution of the conservation equations of the coolant. \item $\mathcal{R}^{th}_{15}$ contains the relaxation parameter for the multiphysics parameters (temperature of fuel and coolant and density of coolant). \item $\mathcal{R}^{th}_{16}$ contains the time in s. \item $\mathcal{R}^{th}_{17}$ contains the heat transfer coefficient of the gap (if $\mathcal{S}^{th}_{10}=1$). \item $\mathcal{R}^{th}_{18}$ contains the heat transfer coefficient between the clad and fluid (if $\mathcal{S}^{th}_{11}=1$). \item $\mathcal{R}^{th}_{19}$ contains the surface temperature weighting factor of effective fuel temperature for the Rowlands approximation. \item $\mathcal{R}^{th}_{20}$ reactor power, as defined after the {\tt POWER-LAW} keyword. \item $\mathcal{R}^{th}_{21}$ maximum of variable variations in local parameters (used for time step adjustment strategy). \item $\mathcal{R}^{th}_{22}$ contains the rugosity of the fuel rod in m, used in M\"uller-Steinhagen correlation for coolant friction. \item $\mathcal{R}^{th}_{23}$ contains the angle in radians of the fuel channel with respect of the vertical axis. \end{itemize} \subsubsection{The \moc{HISTORY-DATA} sub-directory}\label{sect:thmdirhistorydata} In the \moc{HISTORY-DATA} directory, the following sub-directories will be found: \begin{DescriptionEnregistrement}{Sub-directories in \moc{HISTORY-DATA} directory}{7.0cm} \label{tabl:tabhistorydatadir} \DirEnr {TIMESTEP0000} {sub-directory containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module {\sl in steady-state conditions}.} \DirEnr {TIMESTEP{\sl numt}} {sub-directories containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module in transient conditions at a given time index {\sl numt}. {\sl numt} can take values between 1 and 9999 in I4.4 format.} \end{DescriptionEnregistrement} \noindent In the \moc{TIMESTEP0000} and in each of the \moc{TIMESTEP}{\sl numt} sub-directories, the following records will be found: \begin{DescriptionEnregistrement}{Records in \moc{TIMESTEP} directories}{7.0cm} \label{tabl:tabtimestepdir} \RealEnr {TIME\blank{8}}{$1$}{$s$} {time} \DirlEnr {\moc{CHANNEL}\blank{5}}{$N_{\rm ch}$} {list of $N_{\rm ch}$ sub-directories containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module and sorted channel by channel.} \end{DescriptionEnregistrement} \noindent In each of the \moc{CHANNEL} sub-directories, the following records will be found: \begin{DescriptionEnregistrement}{Records in each \moc{CHANNEL} directory}{7.0cm} \label{tabl:tabchanneldir} \RealEnr {VINLET\blank{6}}{$1$}{$m.s^{-1}$} {inlet velocity} \RealEnr {TINLET\blank{6}}{$1$}{$K$} {inlet temperature} \RealEnr {PINLET\blank{6}}{$1$}{$Pa$} {inlet pressure} \RealEnr {VELOCITIES\blank{2}}{$N_{\rm z}$}{$m.s^{-1}$} {velocity in each of the $N_{\rm z}$ bundles of the channel numbered {\sl numc}} \RealEnr {PRESSURE\blank{4}}{$N_{\rm z}$}{$Pa$} {pressure in each bundle of the channel} \RealEnr {ENTHALPY\blank{4}}{$N_{\rm z}$}{$J.kg^{-1}$} {enthalpy in each bundle of the channel} \RealEnr {DENSITY\blank{5}}{$N_{\rm z}$}{$kg.m^{-3}$} {density in each bundle of the channel} \RealEnr {LIQUID-DENS\blank{1}}{$N_{\rm z}$}{$kg.m^{-3}$} {density of liquid phase in each bundle of the channel} \RealEnr {TEMPERATURES}{$N_{\rm z}, N_{\rm dtot}$}{$K$} {distribution of the temperature in the fuel-pin for each bundle of the channel} \RealEnr {CENTER-TEMPS}{$N_{\rm z}$}{$K$} {center fuel pellet temperature in each bundle of the channel} \RealEnr {RADII}{$N_{\rm z}, N_{\rm dtot}-1$}{$m$} {fuel and clad radii} \end{DescriptionEnregistrement} \clearpage