\subsection{Contents of \dir{history} data structure}\label{sect:hstdir} This data structure contains the information required to ensure a smooth coupling of DRAGON with DONJON when a history based full reactor calculation is to be performed. \subsubsection{The main directory}\label{sect:historydirmain} The following records and sub-directories will be found in the first level of a \dir{history} directory: \begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{history}}{8.0cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {parameter $\mathsf{SIGNA}$ containing the signature of the data structure} \IntEnr {STATE-VECTOR}{$40$} {array $\mathcal{S}^{h}_{i}$ containing various parameters that are required to describe this data structure} \RealEnr {BUNDLELENGTH}{1}{cm} {parameter $L_{z}$ containing the fuel bundle length} \CharEnr {NAMEGLOBAL\blank{2}}{($\mathcal{S}^{h}_{1}$)$*12$} {array $\mathcal{G}_{j}$ containing the names of the global parameters} \RealEnr {PARAMGLOBAL\blank{1}}{$\mathcal{S}^{h}_{1}$}{} {array $G_{j}$ containing the value of the global parameters} \CharEnr {NAMELOCAL\blank{3}}{($\mathcal{S}^{h}_{2}$)$*12$} {array $\mathcal{L}_{j}$ containing the names of the local parameters} \IntEnr {CELLID\blank{6}}{$\mathcal{S}^{h}_{3},\mathcal{S}^{h}_{4}$} {array $C_{i,j}$ containing an identification number associated with bundle $i$ and channel $j$} \IntEnr {FUELID\blank{6}}{$\mathcal{S}^{h}_{3},\mathcal{S}^{h}_{4}$} {array $F_{i,j}$ containing the fuel type associated with bundle $i$ and channel $j$} \DirVar {\listedir{FUELDIR}} {list of sub-directories $\mathsf{FUEL}_{i,j}$ that contain the properties associated with the fuel type $F_{i,j}$} \DirVar {\listedir{CELLDIR}} {list of sub-directories $\mathsf{CELL}_{i,j}$ that contain the properties associated with the cell $C_{i,j}$} \end{DescriptionEnregistrement} The signature for this data structure is $\mathsf{SIGNA}$=\verb*|L_HISTORY |. The array $\mathcal{S}^{h}_{i}$ contains the following information: \begin{itemize} \item $\mathcal{S}^{h}_{1}=N_{g}$ contains the number of global parameters. \item $\mathcal{S}^{h}_{2}=N_{l}$ contains the number of local parameters. \item $\mathcal{S}^{h}_{3}=N_{b}$ contains the number of bundles per channel. \item $\mathcal{S}^{h}_{4}=N_{c}$ contains the number of channels in the core. \item $\mathcal{S}^{h}_{5}=N_{s}$ contains the number of bundle shift. \item $\mathcal{S}^{h}_{6}=T_{s}$ contains the type of depletion solution used. \item $\mathcal{S}^{h}_{7}=T_{b}$ contains the type of burnup considered. \item $\mathcal{S}^{h}_{8}=N_{I}$ contains the number of isotopes. \item $\mathcal{S}^{h}_{9}=G$ contains the number of transport groups. \item $\mathcal{S}^{h}_{10}=N_{r}$ contains the number of regions. \item $\mathcal{S}^{h}_{11}=N_{F}$ contains the number of fuel types. \end{itemize} The fuel directory name $\mathsf{FUEL}_{i,j}$ associated with fuel type $F_{i,j}$ is composed using the following FORTRAN instruction: \begin{quote} \verb|WRITE(|$\mathsf{FUEL}$\verb|,'(A4,I8.8)') |\verb|'FUEL'|, $F_{i,j}$ \end{quote} This directory will contain the initial isotopic content of this fuel type. The cell directory name $\mathsf{CELL}_{i,j}$ associated with $C_{i,j}$ is composed using the following FORTRAN instruction: \begin{quote} \verb|WRITE(|$\mathsf{CELL}$\verb|,'(A4,I8.8)') |\verb|'CELL'|, $C_{i,j}$ \end{quote} This directory will contain the value of the local parameters associated with cell $C_{i,j}$ as well as the current isotopic content of this cell. The identification number $C_{i,j}$ associated with channel $j$ and bundle $i$ can be seen as the serial number of the bundle located at a position in space identified by $(i,j)$. It is automatically managed by the \moc{HST:} module.\cite{Marleau2004a} For a fresh core $C_{i,j}=n$ where $n$ represents the cell order definition in the input file. Upon refueling, some bundles in channel $k$ of the core are displaced from region $(l,k)$ to $(m,k)$, new bundles are introduced at location $(l,k)$ and old bundles removed from location $(m,k)$. If one assumes that $C^{\mathrm{NEW}}$ and $C^{\mathrm{OLD}}$ represents the value of $C$ after and before refueling then we will have: \begin{eqnarray*} C^{\mathrm{NEW}}_{m.k}&=&C^{\mathrm{OLD}}_{l,k} \\ C^{\mathrm{NEW}}_{l,k}&=&C^{\mathrm{FRESH}}_{m,k} \end{eqnarray*} \noindent where $C^{\mathrm{FRESH}}_{m,k}$ represent a fresh fuel cell. The local parameters and burnup power density of the fuel cell previously located at $(m,k)$ are preserved and the fresh fuel isotopic densities is that provided in $F_{m,k}$, the fuel type associated with $C^{\mathrm{FRESH}}_{m,k}$. \subsubsection{The fuel type sub-directory}\label{sect:historydirfuel} Each fuel sub-directory $\mathsf{FUEL}_{i,j}$ contains the following information \begin{DescriptionEnregistrement}{Fuel type sub-directory}{7.0cm} \RealEnr {FUELDEN-INIT}{$2$}{} {array containing the initial density of heavy element in the fuel $\rho_{f}$ in g/cm$^{3}$ and the initial linear density of heavy element in the fuel $m_{f}$ in g/cm.} \CharEnr {ISOTOPESUSED}{($N_{I}$)$*12$} {array containing the name of isotopes used in this fuel type} \IntEnr {ISOTOPESMIX\blank{1}}{$N_{I}$} {array containing the mixture associated with each isotopes in this fuel type} \RealEnr {ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$} {array $\rho_{i}$ containing the density of each isotopes} \end{DescriptionEnregistrement} \subsubsection{The cell type sub-directory}\label{sect:historydircell} Each cell isotopic sub-directory $\mathsf{CELL}_{i,j}$ contains the following information \begin{DescriptionEnregistrement}{Cell sub-directory}{7.0cm} \RealEnr {FUELDEN-INIT}{$2$}{} {array containing the initial density of heavy element in the fuel $\rho_{f}$ in g/cm$^{3}$ and the initial linear density of heavy element in the fuel $m_{f}$ in g/cm.} \RealEnr {PARAMLOCALBR}{$N_{l}$}{} {array $V^{B}_{l}$ containing the value of the local parameters before refueling} \RealEnr {PARAMLOCALAR}{$N_{l}$}{} {array $V^{A}_{l}$ containing the value of the local parameters after refueling} \RealEnr {PARAMBURNTBR}{2}{} {array containing the depletion time $T^{B}$ in days and the burnup power rate $P^{B}$ in kW/kg before refueling} \RealEnr {PARAMBURNTAR}{2}{} {array containing the depletion time $T^{A}$ in days and the burnup power rate $P^{A}$ in kW/kg after refueling} \RealEnr {DEPL-PARAM\blank{2}}{3}{} {array containing the time step $T$ in days, the burnup $B$ in kWd/kg and the irradiation $w$ in n/kb currently reached by the fuel in this cell} \RealEnr {ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$} {array $\rho_{i}$ containing the density of each isotopes} \end{DescriptionEnregistrement} \clearpage