\subsection{The \moc{AFM:} module} The \moc{AFM:} module is used to create an extended \dds{macrolib} containing set of interpolated nuclear properties from a feedback model database.\cite{sissaoui} The \dds{database} information are obtained by previous DRAGON calculations using module \moc{CFC:}.\cite{dragstruc} There are two possible utilizations: \begin{itemize} \item Construction of an extended \dds{macrolib} for fuel properties directly from \dds{database} information with respect to local parameters contained in the fuel map object or directly input. \item Construction of an extended \dds{macrolib} containing only one set of cross sections derivated from the \dds{database} information. Properties can be obtained for fuel or reflector. \end{itemize} The calling specifications are: \begin{DataStructure}{Structure \moc{AFM:}} \dusa{MACRO} \moc{:=} \moc{AFM:} $[$ \dusa{MACRO} $]$ \dusa{DBASE} $[$ \dusa{MAPFL} $]$ \moc{::} \dstr{descafm} \end{DataStructure} \noindent where \begin{ListeDeDescription}{mmmmmmmm} \item[\dusa{MACRO}] \texttt{character*12} name of the extended \dds{macrolib}. The \dds{macrolib} can be in modification mode. \item[\dusa{DBASE}] \texttt{character*12} name of the \dds{database} object containing fuel properties with respect to local parameters. \item[\dusa{MAPFL}] \texttt{character*12} name of the \dds{map} object containing fuel regions description and burnup informations. This file is only required when a \dds{MACRO} is created for fuel area. \item[\dstr{descafm}] structure containing the data to module \moc{AFM:}. \end{ListeDeDescription} \vskip 0.2cm \subsubsection{Input data to the \moc{AFM:} module} \begin{DataStructure}{Structure \dstr{descafm}} $\{$ \moc{MAP} $|$ \moc{MCR} \dusa{mmix} $\}$ \moc{INFOR} \dusa{NAMDB} \\ \moc{DNAME} \dusa{ntyp} ( \dusa{NAMTYP}(i), i=1,\dusa{ntyp} ) \\ \moc{REFT} ( \dusa{imix}(i) \dusa{NAMTYP}(i), i=1,\dusa{ntyp} ) \\ $[$ \moc{EDIT} \dusa{iprint} $]$ \\ $[$ \moc{FIXP} $\{$ \moc{INIT} $|$ \dusa{pow} $\}~]$ \\ $[~\{$ \moc{PWF} $|$ \moc{NPWF} $\}~]$ \\ $[$ \moc{TFUEL} \dusa{tfuel} $]$ \\ $[$ \moc{TCOOL} \dusa{tcool} $]$ \\ $[$ \moc{TMOD} \dusa{tmod} $]$ \\ $[$ \moc{BORON} \dusa{nB} $]$ \\ $[$ \moc{RDCL} \dusa{dcool} $]$ \\ $[$ \moc{RDMD} \dusa{dmod} $]$ \\ $[$ \moc{PUR} \dusa{purity} $]$ \\ $[$ \moc{BURN} \dusa{bval} $]$ \\ $[$ $\{$ \moc{XENON} \dusa{nXe} $|$ \moc{XEREF} $\}$ $]$ \\ $[$ $\{$ \moc{NEP} \dusa{nNp} $|$ \moc{NREF} $\}$ $]$ \\ $[$ \moc{SAM} \dusa{nSm} $]$ \\ $[$ \moc{IMET} \dusa{imet} $]$ \\ $[$ \moc{BLIN} $]$ \\ ; \end{DataStructure} \noindent where \begin{ListeDeDescription}{mmmmmmmm} \item[\moc{MAP}] keyword to specify that a \dds{macrolib} for fuel properties will be computed. \item[\moc{MCR}] keyword to specify that a \dds{macrolib} containing only one non-zero mixture will be created. \item[\dusa{mmix}] maximum number of mixtures in the \dds{macrolib}. \item[\moc{INFOR}] keyword to specify the data base name. \item[\dusa{NAMDB}] \texttt{character*72} title of the database as it has been created. \item[\moc{DNAME}] keyword to specify the number of fuel types and their names as stored in the data base. \item[\dusa{ntyp}] number of fuel types. For \moc{MCR} option, \dusa{ntyp} must be 1. \item[\dusa{NAMTYP}(i)] \texttt{character*12} name of the directory where each fuel type information has been stored. \item[\moc{REFT}] keyword to specify a number associated with a fuel type name. \item[\dusa{imix}(i)] fuel type index as specified for the fuel map or a non-zero mixture number for the single-property {sc macrolib}. \item[\moc{EDIT}] keyword used to set \dusa{iprint}. \item[\dusa{iprint}] index used to control the printing in module {\tt AFM:}. =0 for no print(default value); =1 for minimum printing; larger values produce increasing amounts of output. \item[\moc{FIXP}] keyword used to set the power used for cross-section interpolation. \item[\moc{INIT}] a distributed beginning-of-transient bundle power in kW is used. This power distribution has to be pre-calculated in the \moc{FLPOW:} module using the \moc{INIT} keyword. \item[\dusa{pow}] uniform bundle power in kW. If this data is omitted, the reference value in the data base is used or the bundle powers present in a \dds{map}. The reference value is 615 kW if none were provided at the database computation time. \item[\moc{PWF}] keyword used to activate power bundle feedback on fuel properties using powers recovered from {\tt 'BUND-PW'} record in \dusa{MAPFL}. This is the default option if \moc{MAP} is selected. \item[\moc{NPWF}] keyword used to deactivate \moc{PWF} feedback. This is the only possible option if \moc{MCR} is selected. \item[\moc{TFUEL}] keyword used to set \dusa{tfuel}. \item[\dusa{tfuel}] fuel temperature in K. If this data is omitted and the bundle powers present in a \dds{map}, fuel temperatures are computed with respect to powers. If this data is omitted and there is no bundle power, the reference value in the data base is used, where it is 941.29 K if none were provided at the database computation time. \item[\moc{TCOOL}] keyword used to set \dusa{tcool}. \item[\dusa{tcool}] coolant temperature in K. If this data is omitted, the reference value in the data base is used. The reference value is 560.66 K if none were provided at the database computation time. \item[\moc{TMOD}] keyword used to set \dusa{tmod}. \item[\dusa{tmod}] moderator temperature in K. If this data is omitted, the reference value in the data base is used. The reference value is 345.66 K if none were provided at the database computation time. \item[\moc{BORON}] keyword used to set \dusa{nB}. \item[\dusa{nB}] Boron concentration in ppm. If this data is omitted, the reference value in the data base is used. The reference value is 0.0 ppm. See note below for inside equations. \item[\moc{RDCL}] keyword used to set \dusa{dcool}. \item[\dusa{dcool}] coolant density in $g/cm^3$. If this data is omitted, the reference value in the data base is used. The reference value is 0.81212 $g/cm^3$ if none were provided at the database computation time. \item[\moc{RDMD}] keyword used to set \dusa{dmod}. \item[\dusa{dmod}] moderator density in $g/cm^3$. If this data is omitted, the reference value in the data base is used. The reference value is 1.082885 $g/cm^3$ if none were provided at the database computation time. \item[\moc{PUR}] keyword used to set \dusa{purity}. \item[\dusa{purity}] moderator purity in atm\%. If this data is omitted, the reference value in the data base is used. The reference value is 99.911 atm\% if none were provided at the database computation time. \item[\moc{BURN}] keyword used to set \dusa{bval}. This option is valid only when \moc{MCR} is used and can not be omitted. \item[\dusa{bval}] fuel burnup in MWd/t. This value must be positive. \item[\moc{XENON}] keyword used to set \dusa{nXe}. \item[\dusa{nXe}] Xenon concentration in $10^{24} at/cm^3$. This concentration will be applied to every bundle. \item[\moc{XEREF}] keyword used to specify that the Xenon concentrations as computed with DRAGON will be taken. If this option is omitted and \dds{map} contains bundle fluxes, new Xenon concentrations will be computed and used. \item[\moc{NEP}] keyword used to set \dusa{nNp}. \item[\dusa{nNp}] Neptunium concentration in $10^{24} at/cm^3$. \item[\moc{XEREF}] keyword used to specify that the Neptunium concentrations as computed with DRAGON will be taken. If this option is omitted and \dds{map} contains bundle fluxes, new Neptunium concentrations will be computed and used. \item[\moc{SAM}] keyword used to set \dusa{nSm}. \item[\dusa{nSm}] Samarium concentration in $10^{24} at/cm^3$. If this data is omitted, bundle concentrations as computed by DRAGON is used. \item[\moc{IMET}] keyword used to set \dusa{imet}. \item[\dusa{imet}] interpolation type for time-average calculations. \dusa{imet} = 1: using Lagrange approximations; \dusa{imet} = 2: using spline approximations; \dusa{imet} = 3: using Hermite approximations (default value). \item[\moc{BLIN}] keyword used to linear interpolation for burnup instead of the Lagrangian interpolation method. \end{ListeDeDescription} \vskip 0.2cm Note: The concentration of boron is provided in terms of $10^{24}at/cm^3$ in the database. However, the usual units are $ppm (wt)$ of Boron. Thus, the input asks for $ppm$ of Boron ($n_B$), and automatically transform the units into $10^{24}at/cm^3$ using the following equations: \begin{eqnarray*} \rho_B(g/cm^3) & = & n_B \ . \ \rho_{\rm water}(g/cm^3)\\ {\rm and} & & \\ \rho_{\rm water}(at/cm^3) & = & 3 \rho_{\rm water}(molecule/cm^3) =\frac{3.N}{M_{\rm water}} \rho_{\rm water}(g/cm^3)\\ \rho_{B}(at/cm^3) & = & \rho_{B}(molecule/cm^3) =\frac{N}{M_{B}} \rho_{}(g/cm^3)\\ {\rm thus} & & \\ \rho_{B}(10^{24}at/cm^3) & = & n_B \ . \ \frac{M_{\rm water}}{3.M_{B}} \rho_{\rm water}(10^{24}at/cm^3) \end{eqnarray*} where $M$ molar mass and $N$ the Avogadro number. They are many options on how to use the module {\tt AFM:} for its different purposes. A compact summary is presented on Tab. \ref{tabAFM}. \begin{table}[!h] \caption{AFM options summary} \begin{center} \begin{tabular}{|p{0.15\textwidth}|p{0.28\textwidth}|p{0.45\textwidth}|} \hline Option & Keywords & Parameter values \\ \hline MCR & REFT & Nominal values \\ & REFT + \{TFUEL, TCOOL, ...\} & Nominal values except for specified parameters \\ \hline TAB & REFT & Nominal values except for TFUEL parameter which is computed according to the Rozon correlation using nominal power\\ & REFT + \{TFUEL, TCOOL, ...\} & Same as above except for specified parameters which will have a constant value \\ \hline MAP with local parameters & REFT & Nominal values except for local parameters included in MAP\\ & REFT + \{TFUEL, TCOOL, ...\} & Same as above except for specified parameters which will have a constant value\\ \hline MAP without local parameters & REFT & Nominal values except for TFUEL parameter which is computed according to the Rozon correlation if power distribution is available\\ & REFT + \{TFUEL, TCOOL, ...\} & Same as above except for specified parameters which will have a constant value\\ \hline \end{tabular} \end{center} \label{tabAFM} \end{table} The Rozon correlation for fuel temperature as a function of bundle power is: $$ T_{\rm fuel}= T_{\rm cool} + 0.476 \, P + 2.267 \, P^2 \times 10^{-4} $$ where $P$ is in kW and temperatures are in Kelvin. \clearpage