\subsection{Geometries}\label{sect:ExGEOData} In order to illustrate the use of the various geometries presented in \Sect{GEOData}, lets us consider a few examples that can be treated by DRAGON. \begin{itemize} \item 1--D Slab geometry (see \Fig{plaque}): \begin{figure}[h!] \begin{center} \epsfxsize=11cm \centerline{ \epsffile{Gplaque.eps}} \parbox{14cm}{\caption{Slab geometry with mesh-splitting} \label{fig:plaque}} \end{center} \end{figure} This geometry can be analyzed using a \moc{SYBILT:} tracking modules: \begin{verbatim} PLATE := GEO: :: CAR1D 6 X- VOID X+ ALBE 1.2 MESHX 0.0 0.1 0.3 0.5 0.6 0.8 1.0 SPLITX 2 2 2 1 2 1 MIX 1 2 3 4 5 6 ; \end{verbatim} \item 2--D Cartesian geometry containing micro-structures (see figure \Fig{grains}): \begin{figure}[h!] \begin{center} \epsfxsize=10cm \centerline{ \epsffile{Ggrains.eps}} \parbox{14cm}{\caption{Two-dimensional Cartesian assembly containing micro-structures} \label{fig:grains}} \end{center} \end{figure} This geometry can be analyzed only using \moc{SYBILT:} tracking modules: \begin{verbatim} CARNSG := GEO: :: CAR2D 3 3 X- DIAG X+ REFL Y- SYME Y+ DIAG MIX C1 C1 C2 C3 C2 C3 BIHET SPHE (*NG=*) 2 (* NMILG= *) 2 (* SPHERICAL MICRO-STRUCTURE *) (* NS= *) 3 3 (* M-S-1 *) 0.0 0.1 0.2 0.3 (* M-S 2 *) 0.0 0.2 0.4 0.5 (* COMPOSITE MIXTURES *) 4 5 (* MIXTURES SURROUNDING M-S *) 1 1 (* COMPOSITE MIXTURE 4 FRACT *) 0.4 0.0 (* REAL MIXTURE CONTENT M-S-1 *) 3 1 3 (* COMPOSITE MIXTURE 5 FRACT *) 0.2 0.1 (* REAL MIXTURE CONTENT M-S-1 *) 1 2 1 (* REAL MIXTURE CONTENT M-S-2 *) 2 3 1 ::: C1 := GEO: CAR2D 1 1 (* HOMOGENEOUS CELL WITH M-S *) MESHX 0.0 1.45 MESHY 0.0 1.45 MIX 4 ; ::: C2 := GEO: C1 (* HOMOGENEOUS CELL WITHOUT M-S *) MIX 1 ; ::: C3 := GEO: CARCEL 2 (* CELL WITH M-S TUBE *) MESHX 0.0 1.45 MESHY 0.0 1.45 RADIUS 0.0 0.6 0.7 MIX 5 2 1 ; ; \end{verbatim} \item Cylindrical and Cartesian cluster geometry (see \Fig{grappe}): \begin{figure}[h!] \begin{center} \epsfxsize=10cm \centerline{ \epsffile{Ggrappe.eps}} \parbox{14cm}{\caption{Cylindrical cluster geometry}\label{fig:grappe}} \end{center} \end{figure} The first two geometry, namely {\tt ANNPIN} and {\tt CARPIN} can be analyzed using a \moc{EXCELT:} tracking modules since the pins in the clusters are all located between annular region. For the last two geometries, {\tt ANNSPIN} and {\tt CARSPIN}, which are based on {\tt ANNPIN} and {\tt CARPIN} respectively, they only be treated by the \moc{EXCELT:} tracking modules since the pins in the clusters intersect the annular regions defined by the \moc{SPLITR} option. This later option which was selected to ensure a uniform thickness of 0.25 cm for each the annular region in the final geometries. \begin{verbatim} ANNPIN := GEO: :: TUBE 3 R+ REFL RADIUS 0.0 0.75 2.75 4.75 MIX 2 1 3 CLUSTER C1 C2 ::: C1 := GEO: TUBE 2 MIX 2 4 RADIUS 0.0 0.3 0.6 NPIN 4 RPIN 1.75 APIN 0.523599 ; ::: C2 := GEO: C1 NPIN 2 RPIN 3.75 APIN 1.570796 ; ; CARPIN := GEO: :: CARCEL 3 X- REFL X+ REFL Y- REFL Y+ REFL MESHX 0.0 10.0 MESHY -5.0 5.0 RADIUS 0.0 0.75 2.75 4.75 MIX 2 1 3 3 CLUSTER C1 C2 ::: C1 := GEO: TUBE 2 MIX 2 4 RADIUS 0.0 0.3 0.6 NPIN 4 RPIN 1.75 APIN 0.523599 ; ::: C2 := GEO: C1 NPIN 2 RPIN 3.75 APIN 1.570796 ; ; ANNSPIN := GEO: ANNPIN :: SPLITR 3 8 8 ; CARSPIN := GEO: CARPIN :: SPLITR 3 8 8 ; \end{verbatim} Note that even if \moc{MESHX} and \moc{MESHY} differ in {\tt CARPIN}, the annular regions and pins will still be localized with respect to the center of the cell located at $(x,y)=(5.0,0.0)$ cm. \item 2--D hexagonal geometry (see \Fig{hexcel}): \begin{figure}[h!] \begin{center} \epsfxsize=10cm \centerline{ \epsffile{Ghexcel.eps}} \parbox{14cm}{\caption{Two-dimensional hexagonal geometry} \label{fig:hexcel}} \end{center} \end{figure} This geometry can be analyzed using the \moc{SYBILT:} and \moc{EXCELT:} tracking modules: \begin{verbatim} HEXAGON := GEO: :: HEX 12 HBC S30 ALBE 1.6 SIDE 1.3 MIX 1 1 1 2 2 2 3 3 3 4 5 6 ; \end{verbatim} \item 3--D Cartesian supercell (see \Fig{supercel}): \begin{figure}[h!] \begin{center} \epsfxsize=10cm \centerline{ \epsffile{Gsupercel.eps}} \parbox{14cm}{\caption{Three-dimensional Cartesian super-cell}\label{fig:supercel}} \end{center} \end{figure} This geometry can only be analyzed using the \moc{EXCELT:} tracking modules: \begin{verbatim} SUPERCELL := GEO: :: CAR3D 4 4 3 X- REFL X+ REFL Y- REFL Y+ REFL Z- REFL Z+ REFL MIX A1 C1 D1 A3 A2 C2 D2 D2 A2 C2 C2 C2 A2 C2 C2 C2 C3 C3 D3 A4 C4 C4 D4 D4 C4 C4 C4 C4 C4 C4 C4 C4 C3 C3 D3 A4 C4 C4 D4 D4 C4 C4 C4 C4 C4 C4 C4 C4 ::: C1 := GEO: CAR3D 1 1 1 MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0 MIX 1 ; ::: C2 := GEO: C1 MESHY 0.0 1.0 ; ::: C3 := GEO: C1 MESHZ 0.0 1.0 ; ::: C4 := GEO: C2 MESHZ 0.0 1.0 ; ::: D1 := GEO: C1 MIX 2 ; ::: D2 := GEO: C2 MIX 2 ; ::: D3 := GEO: C3 MIX 2 ; ::: D4 := GEO: C4 MIX 2 ; ::: A1 := GEO: CARCELY 2 1 MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0 RADIUS 0.0 0.4 0.45 MIX 3 4 1 ; ::: A2 := GEO: A1 MESHY 0.0 1.0 ; ::: A3 := GEO: CARCELZ 2 1 MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0 RADIUS 0.0 0.3 0.35 MIX 5 6 1 ; ::: A4 := GEO: A3 MESHZ 0.0 1.0 ; ; \end{verbatim} \item Multicell geometry in a 2--D hexagonal lattice (see \Fig{multihex}). \begin{figure}[h!] \begin{center} \epsfxsize=14cm \centerline{ \epsffile{Gmultihex.eps}} \parbox{14cm}{\caption{Hexagonal multicell lattice geometry} \label{fig:multihex}} \end{center} \end{figure} Here we are considering an infinite lattice having two types of cells such that \begin{align*} \begin{pmatrix}\text{pource}(1) \\ \text{pource}(2) \end{pmatrix}&= \begin{pmatrix}1/3 \\ 2/3 \\ \end{pmatrix}\ \ \ \ \text{ and} \ \ \ \ \begin{pmatrix} \text{procel}(1,1) & \text{procel}(1,2) \\ \text{procel}(2,1) & \text{procel}(2,2) \\ \end{pmatrix}= \begin{pmatrix}0 & 1 \\ 1/2 & 1/2 \\ \end{pmatrix} \end{align*} This lattice, can be represented either in a {\sl do-it-yourself} type geometry ({\tt HEXDIY}) or directly ({\tt HEXDIR}): \begin{verbatim} HEXDIY := GEO: :: GROUP 2 POURCE 0.3333333 0.66666667 PROCEL 0.0 1.0 0.5 0.5 MIX C1 C2 ::: C1 := GEO: TUBE 1 RADIUS 0.0 1.1822093 MIX 1 ; ::: C2 := GEO: C1 MIX 2 ; ; HEXDIR := GEO: :: HEX 2 HBC S30 SYME SIDE 1.3 MIX 1 2 ; \end{verbatim} The first lattice can only be analyzed using the \moc{SYBILT:} tracking module, while the second lattice can be analyzed using all the tracking modules of DRAGON. \end{itemize} \eject