\subsection{Scattering cross sections}\label{sect:ExXSData} In DRAGON, the angular dependence of the scattering cross section is expressed in a Legendre series expansion of the form: $$ \Sigma_{s}(\Omega\cdot\Omega')=\Sigma_{s}(\mu)= \sum_{l=0}^{L}\left({{(2l+1)}\over{4\pi}}\right)\Sigma_{s,l}P_{l}(\mu). $$ Since the Legendre polynomials satisfy the following orthogonality conditions: $$ \int_{-1}^{1} d\mu P_{l}(\mu)P_{m}(\mu) = \left({{2\delta_{l,m}}\over{(2l+1)}}\right), $$ we will have $$ \Sigma_{s,l}=\int_{-1}^{1}d\mu\int_{0}^{2\pi}d\varphi\Sigma_{s}(\mu)P_{l}(\mu)= 2\pi \int_{-1}^{1}d\mu\Sigma_{s}(\mu)P_{l}(\mu). $$ Let us now consider the following three-group (\dusa{ngroup}=3) isotropic and linearly anisotropic scattering cross sections ($L$=\dusa{naniso}=2) given by: \begin{center} \begin{tabular}{|llccc|}\hline\hline $l$ & $g$ & $\Sigma_{s,l}^{g\to 1}$ (\xsunit) & $\Sigma_{s,l}^{g\to 2}$ (\xsunit) & $\Sigma_{s,l}^{g\to 3}$ (\xsunit) \\ \hline & 1 & 0.90 & 0.80 & 0.00 \\ 0 & 2 & 0.00 & 0.70 & 0.60 \\ & 3 & 0.00 & 0.30 & 0.40 \\ \hline & 1 & 0.09 & 0.05 & 0.08 \\ 1 & 2 & 0.00 & 0.07 & 0.06\\ & 3 & 0.03 & 0.00 & 0.04 \\ \hline\hline \end{tabular} \end{center} \noindent In DRAGON this scattering cross section must be entered as \begin{verbatim} SCAT (* L=0 *) 1 1 (* 3->1 *) (* 2->1 *) (* 1->1 *) 0.90 3 3 (* 3->2 *) 0.30 (* 2->2 *) 0.70 (* 1->2 *) 0.80 2 3 (* 3->3 *) 0.40 (* 2->3 *) 0.60 (* 1->3 *) SCAT (* L=1 *) 3 3 (* 3->1 *) 0.03 (* 2->1 *) 0.00 (* 1->1 *) 0.09 2 2 (* 3->2 *) (* 2->2 *) 0.07 (* 1->2 *) 0.05 3 3 (* 3->3 *) 0.04 (* 2->3 *) 0.06 (* 1->3 *) 0.08 \end{verbatim}