*DECK VALUE4 SUBROUTINE VALUE4(IELEM,NUN,LX,LY,LZ,X,Y,Z,XXX,YYY,ZZZ,EVECT,ISS, + KFLX,IXLG,IYLG,IZLG,AXYZ) * *----------------------------------------------------------------------- * *Purpose: * Interpolate the flux distribution for DUAL method in 3D. * *Copyright: * Copyright (C) 2002 Ecole Polytechnique de Montreal * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version * *Author(s): R. Chambon * *Parameters: input * IELEM finite element order * =1 : linear Raviart-Thomas * =2 : parabolic Raviart-Thomas * =3 : cubic Raviart-Thomas * =4 : quartic Raviart-Thomas * NUN number of unknowns * LX number of elements along the X axis. * LY number of elements along the Y axis. * LZ number of elements along the Z axis. * X Cartesian coordinates along the X axis where the flux is * interpolated. * Y Cartesian coordinates along the Y axis where the flux is * interpolated. * Z Cartesian coordinates along the Z axis where the flux is * interpolated. * XXX Cartesian coordinates along the X axis. * YYY Cartesian coordinates along the Y axis. * ZZZ Cartesian coordinates along the Z axis. * EVECT variational coefficients of the flux. * ISS mixture index assigned to each element. * KFLX correspondence between local and global numbering. * IXLG number of interpolated points according to X. * IYLG number of interpolated points according to Y. * IZLG number of interpolated points according to Z. * *Parameters: output * AXYZ interpolated fluxes. * *---------------------------------------------------------------------- * IMPLICIT NONE *---- * SUBROUTINE ARGUMENTS *---- INTEGER IELEM,NUN,LX,LY,LZ,IXLG,IYLG,IZLG,ISS(LX*LY*LZ), 1 KFLX(LX*LY*LZ) REAL X(IXLG),Y(IYLG),Z(IZLG),XXX(LX+1),YYY(LY+1),ZZZ(LZ+1), 1 EVECT(NUN),AXYZ(IXLG,IYLG,IZLG) *---- * LOCAL VARIABLES *---- INTEGER I,J,K,L,IS,JS,KS,IEL,I1,I2,I3,IE REAL COTE,ORDO,ABSC,COEF(2,5),FLX(5),FLY(5),FLZ(5) REAL U,V,W *---- * compute coefficient for legendre polynomials *---- COEF(:2,:5)=0.0 COEF(1,1)=1.0 COEF(1,2)=2.*3.**0.5 DO IE=1,3 COEF(1,IE+2)=2.0*REAL(2*IE+1)/REAL(IE+1) 1 *(REAL(2*IE+3)/REAL(2*IE+1))**0.5 COEF(2,IE+2)=REAL(IE)/REAL(IE+1) 1 *(REAL(2*IE+3)/REAL(2*IE-1))**0.5 ENDDO *---- * perform interpolation *---- DO 120 K=1,IZLG COTE=Z(K) DO 110 J=1,IYLG ORDO=Y(J) DO 100 I=1,IXLG ABSC=X(I) AXYZ(I,J,K)=0.0 * * Find the finite element index containing the interpolation point IS=0 JS=0 KS=0 DO 20 L=1,LX IS=L IF((ABSC.GE.XXX(L)).AND.(ABSC.LE.XXX(L+1))) GO TO 30 20 CONTINUE CALL XABORT('VALUE4: WRONG INTERPOLATION(1).') 30 DO 40 L=1,LY JS=L IF((ORDO.GE.YYY(L)).AND.(ORDO.LE.YYY(L+1))) GO TO 50 40 CONTINUE CALL XABORT('VALUE4: WRONG INTERPOLATION(2).') 50 DO 60 L=1,LZ KS=L IF((COTE.GE.ZZZ(L)).AND.(COTE.LE.ZZZ(L+1))) GO TO 70 60 CONTINUE CALL XABORT('VALUE4: WRONG INTERPOLATION(3).') 70 IEL=(KS-1)*LX*LY+(JS-1)*LX+IS C IF(ISS(IEL).EQ.0) GO TO 100 U=(ABSC-0.5*(XXX(IS)+XXX(IS+1)))/(XXX(IS+1)-XXX(IS)) FLX(1)=COEF(1,1) FLX(2)=COEF(1,2)*U V=(ORDO-0.5*(YYY(JS)+YYY(JS+1)))/(YYY(JS+1)-YYY(JS)) FLY(1)=COEF(1,1) FLY(2)=COEF(1,2)*V W=(COTE-0.5*(ZZZ(KS)+ZZZ(KS+1)))/(ZZZ(KS+1)-ZZZ(KS)) FLZ(1)=COEF(1,1) FLZ(2)=COEF(1,2)*W IF(IELEM.GE.2) THEN DO IE=2,IELEM FLX(IE+1)=FLX(IE)*U*COEF(1,IE+1)-FLX(IE-1)*COEF(2,IE+1) FLY(IE+1)=FLY(IE)*V*COEF(1,IE+1)-FLY(IE-1)*COEF(2,IE+1) FLZ(IE+1)=FLZ(IE)*W*COEF(1,IE+1)-FLZ(IE-1)*COEF(2,IE+1) ENDDO ENDIF DO 93 I3=1,IELEM DO 92 I2=1,IELEM DO 91 I1=1,IELEM L=(I3-1)*(IELEM)**2+(I2-1)*(IELEM)+I1 AXYZ(I,J,K)=AXYZ(I,J,K)+EVECT(KFLX(IEL)+L-1)*FLX(I1)*FLY(I2) 1 *FLZ(I3) 91 CONTINUE 92 CONTINUE 93 CONTINUE 100 CONTINUE 110 CONTINUE 120 CONTINUE RETURN END