*DECK VALUE2 SUBROUTINE VALUE2 (LC,MKN,LX,LY,LZ,L4,X,Y,Z,XXX,YYY,ZZZ,EVECT, + ISS,KN,IXLG,IYLG,IZLG,E,AXYZ) * *----------------------------------------------------------------------- * *Purpose: * Interpolate the flux distribution for PRIM method in 3D. * *Copyright: * Copyright (C) 2002 Ecole Polytechnique de Montreal * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version * *Author(s): A. Hebert * *Parameters: input * LC order of the unit matrices. * MKN second dimension for matrix KN. * LX number of elements along the X axis. * LY number of elements along the Y axis. * LZ number of elements along the Z axis. * L4 dimension of unknown array EVECT. * X Cartesian coordinates along the X axis where the flux is * interpolated. * Y Cartesian coordinates along the Y axis where the flux is * interpolated. * Z Cartesian coordinates along the Z axis where the flux is * interpolated. * XXX Cartesian coordinates along the X axis. * YYY Cartesian coordinates along the Y axis. * ZZZ Cartesian coordinates along the Z axis. * EVECT variational coefficients of the flux. * ISS mixture index assigned to each element. * KN element-ordered unknown list. * IELEM MCFD polynomial order (IELEM=1 is the mesh centered finite * difference method). * IXLG number of interpolated points according to X. * IYLG number of interpolated points according to Y. * IZLG number of interpolated points according to Z. * E Lagrange polynomial coefficients. * *Parameters: output * AXYZ interpolated fluxes. * *---------------------------------------------------------------------- * *---- * SUBROUTINE ARGUMENTS *---- INTEGER LC,MKN,LX,LY,LZ,L4,ISS(LX*LY*LZ),KN(LX*LY*LZ*MKN),IXLG, 1 IYLG,IZLG REAL X(IXLG),Y(IYLG),Z(IZLG),XXX(LX+1),YYY(LY+1),ZZZ(LZ+1), 1 EVECT(L4),AXYZ(IXLG,IYLG,IZLG),E(LC,LC) *---- * LOCAL VARIABLES *---- INTEGER IJ1(125),IJ2(125),IJ3(125) REAL FLX(5),FLY(5),FLZ(5) *---- * ALLOCATABLE ARRAYS *---- INTEGER, ALLOCATABLE, DIMENSION(:) :: IWRK REAL, ALLOCATABLE, DIMENSION(:,:) ::COEF *---- * Scratch storage allocation *---- ALLOCATE(IWRK(LX*LY*LZ),COEF(LX*LY*LZ,MKN)) *---- * Calculation of IJ integer arrays *---- LL=LC*LC*LC DO 5 L=1,LL L1=1+MOD(L-1,LC) L2=1+(L-L1)/LC L3=1+MOD(L2-1,LC) IJ1(L)=L1 IJ2(L)=L3 IJ3(L)=1+(L2-L3)/LC 5 CONTINUE * NUM=0 DO 10 I=1,LX*LY*LZ IWRK(I)=0 IF (ISS(I).EQ.0) GO TO 10 IWRK(I)=NUM NUM=NUM+1 10 CONTINUE * DO 120 K=1,IZLG COTE=Z(K) DO 110 J=1,IYLG ORDO=Y(J) DO 100 I=1,IXLG ABSC=X(I) AXYZ(I,J,K)=0.0 * * Find the finite element index containing the interpolation point IS=0 JS=0 KS=0 DO 20 L=1,LX IS=L IF((ABSC.GE.XXX(L)).AND.(ABSC.LE.XXX(L+1))) GO TO 30 20 CONTINUE CALL XABORT('VALUE2: WRONG INTERPOLATION(1).') 30 DO 40 L=1,LY JS=L IF((ORDO.GE.YYY(L)).AND.(ORDO.LE.YYY(L+1))) GO TO 50 40 CONTINUE CALL XABORT('VALUE2: WRONG INTERPOLATION(2).') 50 DO 60 L=1,LZ KS=L IF((COTE.GE.ZZZ(L)).AND.(COTE.LE.ZZZ(L+1))) GO TO 70 60 CONTINUE CALL XABORT('VALUE2: WRONG INTERPOLATION(3).') 70 IEL=(KS-1)*LX*LY+(JS-1)*LX+IS * IF(ISS(IEL).EQ.0) GO TO 100 NUM=IWRK(IEL) IF (NUM.NE.-1) THEN DO 85 M=1,LL I1=IJ1(M) I2=IJ2(M) I3=IJ3(M) COEF(IEL,M)=0.0 DO 80 N=1,LL IND2=KN(LL*NUM+N) IF (IND2.EQ.0) GO TO 80 J1=IJ1(N) J2=IJ2(N) J3=IJ3(N) COEF(IEL,M)=COEF(IEL,M)+E(I1,J1)*E(I2,J2)*E(I3,J3)*EVECT(IND2) 80 CONTINUE 85 CONTINUE IWRK(IEL)=-1 ENDIF * U=(ABSC-0.5*(XXX(IS)+XXX(IS+1)))/(XXX(IS+1)-XXX(IS)) FLX(1)=1.0 FLX(2)=FLX(1)*U FLX(3)=FLX(2)*U FLX(4)=FLX(3)*U FLX(5)=FLX(4)*U V=(ORDO-0.5*(YYY(JS)+YYY(JS+1)))/(YYY(JS+1)-YYY(JS)) FLY(1)=1.0 FLY(2)=FLY(1)*V FLY(3)=FLY(2)*V FLY(4)=FLY(3)*V FLY(5)=FLY(4)*V W=(COTE-0.5*(ZZZ(KS)+ZZZ(KS+1)))/(ZZZ(KS+1)-ZZZ(KS)) FLZ(1)=1.0 FLZ(2)=FLZ(1)*W FLZ(3)=FLZ(2)*W FLZ(4)=FLZ(3)*W FLZ(5)=FLZ(4)*W DO 90 L=1,LL I1=IJ1(L) I2=IJ2(L) I3=IJ3(L) AXYZ(I,J,K)=AXYZ(I,J,K)+COEF(IEL,L)*FLX(I1)*FLY(I2)*FLZ(I3) 90 CONTINUE 100 CONTINUE 110 CONTINUE 120 CONTINUE *---- * Scratch storage deallocation *---- DEALLOCATE(COEF,IWRK) RETURN END