*DECK VALU4B SUBROUTINE VALU4B(IELEM,NUN,LX,LY,X,Y,XXX,YYY,EVECT,ISS,KFLX, + IXLG,IYLG,AXY) * *----------------------------------------------------------------------- * *Purpose: * Interpolate the flux distribution for DUAL method in 2D. * *Copyright: * Copyright (C) 2002 Ecole Polytechnique de Montreal * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version * *Author(s): R. Chambon * *Parameters: input * IELEM finite element order * =1 : linear Raviart-Thomas * =2 : parabolic Raviart-Thomas * =3 : cubic Raviart-Thomas * =4 : quartic Raviart-Thomas * NUN number of unknowns * LX number of elements along the X axis. * LY number of elements along the Y axis. * X Cartesian coordinates along the X axis where the flux is * interpolated. * Y Cartesian coordinates along the Y axis where the flux is * interpolated. * XXX Cartesian coordinates along the X axis. * YYY Cartesian coordinates along the Y axis. * EVECT variational coefficients of the flux. * ISS mixture index assigned to each element. * KFLX correspondence between local and global numbering. * IXLG number of interpolated points according to X. * IYLG number of interpolated points according to Y. * *Parameters: output * AXY interpolated fluxes. * *---------------------------------------------------------------------- * IMPLICIT NONE *---- * SUBROUTINE ARGUMENTS *---- INTEGER IELEM,NUN,LX,LY,IXLG,IYLG,ISS(LX*LY),KFLX(LX*LY) REAL X(IXLG),Y(IYLG),XXX(LX+1),YYY(LY+1),EVECT(NUN),AXY(IXLG,IYLG) *---- * LOCAL VARIABLES *---- INTEGER I,J,L,IS,JS,IEL,I1,I2,IE REAL ORDO,ABSC,COEF(2,5),FLX(5),FLY(5) REAL U,V *---- * compute coefficient for legendre polynomials *---- COEF(:2,:5)=0.0 COEF(1,1)=1.0 COEF(1,2)=2.*3.**0.5 DO IE=1,3 COEF(1,IE+2)=2.0*REAL(2*IE+1)/REAL(IE+1) 1 *(REAL(2*IE+3)/REAL(2*IE+1))**0.5 COEF(2,IE+2)=REAL(IE)/REAL(IE+1) 1 *(REAL(2*IE+3)/REAL(2*IE-1))**0.5 ENDDO *---- * perform interpolation *---- DO 105 J=1,IYLG ORDO=Y(J) DO 100 I=1,IXLG ABSC=X(I) AXY(I,J)=0.0 * * Find the finite element index containing the interpolation point IS=0 JS=0 DO 20 L=1,LX IS=L IF((ABSC.GE.XXX(L)).AND.(ABSC.LE.XXX(L+1))) GO TO 30 20 CONTINUE CALL XABORT('VALU4B: WRONG INTERPOLATION(1).') 30 DO 40 L=1,LY JS=L IF((ORDO.GE.YYY(L)).AND.(ORDO.LE.YYY(L+1))) GO TO 70 40 CONTINUE CALL XABORT('VALU4B: WRONG INTERPOLATION(2).') 70 IEL=(JS-1)*LX+IS * IF(ISS(IEL).EQ.0) GO TO 100 U=(ABSC-0.5*(XXX(IS)+XXX(IS+1)))/(XXX(IS+1)-XXX(IS)) FLX(1)=COEF(1,1) FLX(2)=COEF(1,2)*U V=(ORDO-0.5*(YYY(JS)+YYY(JS+1)))/(YYY(JS+1)-YYY(JS)) FLY(1)=COEF(1,1) FLY(2)=COEF(1,2)*V IF(IELEM.GE.2) THEN DO IE=2,IELEM FLX(IE+1)=FLX(IE)*U*COEF(1,IE+1)-FLX(IE-1)*COEF(2,IE+1) FLY(IE+1)=FLY(IE)*V*COEF(1,IE+1)-FLY(IE-1)*COEF(2,IE+1) ENDDO ENDIF DO 92 I2=1,IELEM DO 91 I1=1,IELEM L=(I2-1)*(IELEM)+I1 AXY(I,J)=AXY(I,J)+EVECT(KFLX(IEL)+L-1)*FLX(I1)*FLY(I2) 91 CONTINUE 92 CONTINUE 100 CONTINUE 105 CONTINUE RETURN END