subroutine NSSLR3(keff, ng, bndtl, xxx, dely, delz, diff, sigr, scat, & & chi, nusigf, L, R) ! !----------------------------------------------------------------------- ! !Purpose: ! Compute the 3D ANM coupling matrices for a single node. ! !Copyright: ! Copyright (C) 2023 Ecole Polytechnique de Montreal ! This library is free software; you can redistribute it and/or ! modify it under the terms of the GNU Lesser General Public ! License as published by the Free Software Foundation; either ! version 2.1 of the License, or (at your option) any later version ! !Author(s): A. Hebert ! !Parameters: input ! keff effective multiplication factor. ! ng number of energy groups. ! bndtl set to 'flat' or 'quadratic'. ! xxx node support along X-axis. ! dely node width along Y-axis. ! delz node width along Z-axis. ! diff diffusion coefficient array (cm). ! sigr removal cross section array (cm-1). ! scat P0 scattering cross section matrix (cm^-1). ! chi fission spectrum array. ! nusigf nu*fission cross section array (cm^-1). ! !Parameters: output ! L left nodal coupling matrix. ! R right nodal coupling matrix. ! !----------------------------------------------------------------------- ! !---- ! subroutine arguments !---- integer, intent(in) :: ng real, intent(in) :: keff, xxx(4), dely, delz real, dimension(ng), intent(in) :: diff, sigr, chi, nusigf real, dimension(ng,ng), intent(in) :: scat character(len=12), intent(in) :: bndtl real(kind=8), dimension(ng,14*ng), intent(out) :: L, R !---- ! local variables !---- real(kind=8) :: m0(3,3),m2(3,3),m3(2,3),m4(1,3),Lambda_r,sqla,mmax2 !---- ! allocatable arrays !---- complex(kind=8), allocatable, dimension(:,:) :: T,Lambda real(kind=8), allocatable, dimension(:,:) :: F,DI,T_r,TI,S,Mm,Mp,Nm,Np, & & GAR1,GAR2,GAR3,GAR4,Vm,Vp,Um,Up,MAT1,MAT2,S13 !---- ! scratch storage allocation !---- allocate(F(ng,ng),T_r(ng,ng),T(ng,ng),TI(ng,ng),DI(ng,ng), & & Lambda(ng,ng),S(ng,ng),Mm(2*ng,2*ng),Mp(2*ng,2*ng),Nm(ng,2*ng), & & Np(ng,2*ng),GAR1(ng,2*ng),GAR2(ng,2*ng),GAR3(ng,14*ng), & & GAR4(ng,14*ng),Vm(2*ng,3*ng),Vp(2*ng,3*ng),Um(ng,3*ng), & & Up(ng,3*ng),MAT1(ng,14*ng),MAT2(ng,14*ng)) ! ! quadratic leakage and boundary conditions xmm=xxx(1) ; xm=xxx(2) ; xp=xxx(3) ; xpp=xxx(4) ; delx=xp-xm ; if(xmm == -99999.) then ! Vacuum or zero flux node at left boundary xmm=2.0*xm-xp m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0 m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0 m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0 call ALINVD(3,m0,3,ier) if(ier /= 0) call XABORT('NSSLR3: singular matrix.(1)') m0(:3,1)=0.0d0 elseif(xpp == -99999.) then ! Vacuum or zero flux node at right boundary xpp=2.0*xp-xm m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0 m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0 m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0 call ALINVD(3,m0,3,ier) if(ier /= 0) call XABORT('NSSLR3: singular matrix.(2)') m0(:3,3)=0.0d0 else ! Internal node m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0 m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0 m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0 call ALINVD(3,m0,3,ier) if(ier /= 0) call XABORT('NSSLR3: singular matrix.(3)') endif if(bndtl == 'flat') then ! flat leakage approximation m0(:3,:3)=0.0d0 ; m0(1,2)=1.0d0 endif !---- ! compute matrices L and R !---- Mm(:,:)=0.0d0 Mp(:,:)=0.0d0 Nm(:,:)=0.0d0 Np(:,:)=0.0d0 DI(:,:)=0.0d0 Vm(:,:)=0.0d0 Vp(:,:)=0.0d0 Um(:,:)=0.0d0 Up(:,:)=0.0d0 do ig=1,ng do jg=1,ng if(ig == jg) then F(ig,ig)=(chi(ig)*nusigf(ig)/keff-sigr(ig))/diff(ig) else F(ig,jg)=(chi(ig)*nusigf(jg)/keff+scat(ig,jg))/diff(ig) endif enddo DI(ig,ig)=1./diff(ig) enddo maxiter=40 call ALHQR(ng,ng,F,maxiter,iter,T,Lambda) mmax2=0.0d0 do ig=1,ng do jg=1,ng mmax2=max(mmax2,abs(aimag(T(ig,jg)))) enddo enddo if(mmax2 > 1.0e-6) then write(6,'(3h T=)') do ig=1,ng write(6,'(1p,12e12.4)') T(ig,:) enddo call XABORT('NSSLR3: complex eigenvalues.') endif T_r(:,:)=real(T(:,:),8) do ig=1,ng Lambda_r=real(Lambda(ig,ig),8) sqla=sqrt(abs(Lambda_r)) m2(:3,:3)=0.0d0 m2(1,1)=1.0d0/Lambda_r ; m2(1,3)=-2.0d0/Lambda_r**2 m2(2,2)=1.0d0/Lambda_r ; m2(3,3)=1.0d0/Lambda_r m2(:3,:3)=matmul(m2(:3,:3),m0(:3,:3)) m3(1,1)=1.0d0 ; m3(1,2)=(xm+xp)/2. ; m3(1,3)=(xm**2+xm*xp+xp**2)/3.0d0 m3(2,1)=0.0d0 ; m3(2,2)=-1.0d0 ; m3(2,3)=-2.0d0*xm m3(:2,:3)=matmul(m3(:2,:3),m2(:3,:3)) Vm(ig,ig)=m3(1,1) ; Vm(ig,ng+ig)=m3(1,2) ; Vm(ig,2*ng+ig)=m3(1,3) ; Vm(ng+ig,ig)=m3(2,1) ; Vm(ng+ig,ng+ig)=m3(2,2) ; Vm(ng+ig,2*ng+ig)=m3(2,3) ; m3(1,1)=1.0d0 ; m3(1,2)=(xm+xp)/2.0d0 ; m3(1,3)=(xm**2+xm*xp+xp**2)/3.0d0 m3(2,1)=0.0d0 ; m3(2,2)=-1.0d0 ; m3(2,3)=-2.0d0*xp m3(:2,:3)=matmul(m3(:2,:3),m2(:3,:3)) Vp(ig,ig)=m3(1,1) ; Vp(ig,ng+ig)=m3(1,2) ; Vp(ig,2*ng+ig)=m3(1,3) ; Vp(ng+ig,ig)=m3(2,1) ; Vp(ng+ig,ng+ig)=m3(2,2) ; Vp(ng+ig,2*ng+ig)=m3(2,3) ; m4(1,1)=1.0d0 ; m4(1,2)=xm ; m4(1,3)=xm**2 m4(:1,:3)=matmul(m4(:1,:3),m2(:3,:3)) Um(ig,ig)=m4(1,1) ; Um(ig,ng+ig)=m4(1,2) ; Um(ig,2*ng+ig)=m4(1,3) ; m4(1,1)=1.0d0 ; m4(1,2)=xp ; m4(1,3)=xp**2 m4(:1,:3)=matmul(m4(:1,:3),m2(:3,:3)) Up(ig,ig)=m4(1,1) ; Up(ig,ng+ig)=m4(1,2) ; Up(ig,2*ng+ig)=m4(1,3) ; if(delx*sqla < 1.e-6) then if(Lambda_r >= 0) then Mm(ig,ig)=-(delx*sqla)**6/5040.+(delx*sqla)**4/120.-(delx*sqla)**2/6.+1. Mm(ig,ng+ig)=(delx*sqla)**5/720.-(delx*sqla)**3/24.+(delx*sqla)/2. Mm(ng+ig,ng+ig)=-sqla Mp(ng+ig,ig)=((delx*sqla)**6/120.-(delx*sqla)**4/6.+(delx*sqla)**2)/delx Mp(ng+ig,ng+ig)=(-(delx*sqla)**5/24.+(delx*sqla)**3/2.-(delx*sqla))/delx Nm(ig,ig)=1. Np(ig,ig)=-(delx*sqla)**6/720.+(delx*sqla)**4/24.-(delx*sqla)**2/2.+1. Np(ig,ng+ig)=(delx*sqla)**5/120.-(delx*sqla)**3/6.+(delx*sqla) else Mm(ig,ig)=(delx*sqla)**4/120.+(delx*sqla)**3/24.+(delx*sqla)**2/6.+(delx*sqla)/2. + 1. Mm(ig,ng+ig)=-(delx*sqla)**3/24.+(delx*sqla)**2/6.-(delx*sqla)/2. + 1. Mm(ng+ig,ig)=-sqla ; Mm(ng+ig,ng+ig)=sqla ; Mp(ng+ig,ig)=(-(delx*sqla)**4/6.-(delx*sqla)**3/2.-(delx*sqla)**2-(delx*sqla))/delx Mp(ng+ig,ng+ig)=(-(delx*sqla)**4/6+(delx*sqla)**3/2.-(delx*sqla)**2+(delx*sqla))/delx Nm(ig,ig)=1. ; Nm(ig,ng+ig)=1. ; Np(ig,ig)=(delx*sqla)**4/24.+(delx*sqla)**3/6.+(delx*sqla)**2/2.+(delx*sqla)+1. Np(ig,ng+ig)=(delx*sqla)**4/24.-(delx*sqla)**3/6.+(delx*sqla)**2/2.-(delx*sqla)+1. endif else if(Lambda_r >= 0) then Mm(ig,ig)=(sin(sqla*xp)-sin(sqla*xm))/(delx*sqla) Mm(ig,ng+ig)=-(cos(sqla*xp)-cos(sqla*xm))/(delx*sqla) Mm(ng+ig,ig)=sqla*sin(sqla*xm) Mm(ng+ig,ng+ig)=-sqla*cos(sqla*xm) Mp(ng+ig,ig)=sqla*sin(sqla*xp) Mp(ng+ig,ng+ig)=-sqla*cos(sqla*xp) Nm(ig,ig)=cos(sqla*xm) Nm(ig,ng+ig)=sin(sqla*xm) Np(ig,ig)=cos(sqla*xp) Np(ig,ng+ig)=sin(sqla*xp) else Mm(ig,ig)=exp(sqla*xm)*(exp(sqla*(xp-xm))-1.0d0)/(delx*sqla) Mm(ig,ng+ig)=-exp(-sqla*xm)*(exp(-sqla*(xp-xm))-1.0d0)/(delx*sqla) Mm(ng+ig,ig)=-sqla*exp(sqla*xm) Mm(ng+ig,ng+ig)=sqla*exp(-sqla*xm) Mp(ng+ig,ig)=-sqla*exp(sqla*xp) Mp(ng+ig,ng+ig)=sqla*exp(-sqla*xp) Nm(ig,ig)=exp(sqla*xm) Nm(ig,ng+ig)=exp(-sqla*xm) Np(ig,ig)=exp(sqla*xp) Np(ig,ng+ig)=exp(-sqla*xp) endif Mp(ig,ig)=Mm(ig,ig) Mp(ig,ng+ig)=Mm(ig,ng+ig) enddo ! TI(:,:)=T_r(:,:) call ALINVD(2*ng,Mm,2*ng,ier) if(ier /= 0) call XABORT('NSSLR3: singular matrix.(4)') call ALINVD(2*ng,Mp,2*ng,ier) if(ier /= 0) call XABORT('NSSLR3: singular matrix.(5)') call ALINVD(ng,TI,ng,ier) if(ier /= 0) call XABORT('NSSLR3: singular matrix.(6)') ! GAR1=matmul(Nm,Mm) ! ng,2*ng GAR2=matmul(Np,Mp) ! ng,2*ng S=matmul(TI,DI) ! ng,ng ! MAT1(:ng,:2*ng)=GAR1(:ng,:2*ng) MAT1(:ng,2*ng+1:5*ng)=-Um(:ng,:3*ng)/dely+matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/dely MAT1(:ng,5*ng+1:8*ng)=Um(:ng,:3*ng)/dely-matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/dely MAT1(:ng,8*ng+1:11*ng)=-Um(:ng,:3*ng)/delz+matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/delz MAT1(:ng,11*ng+1:14*ng)=Um(:ng,:3*ng)/delz-matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/delz MAT2(:ng,:2*ng)=GAR2(:ng,:2*ng) MAT2(:ng,2*ng+1:5*ng)=-Up(:ng,:3*ng)/dely+matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/dely MAT2(:ng,5*ng+1:8*ng)=Up(:ng,:3*ng)/dely-matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/dely MAT2(:ng,8*ng+1:11*ng)=-Up(:ng,:3*ng)/delz+matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/delz MAT2(:ng,11*ng+1:14*ng)=Up(:ng,:3*ng)/delz-matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/delz ! GAR3=matmul(T_r,MAT1) ! ng,14*ng GAR4=matmul(T_r,MAT2) ! ng,14*ng L(:ng,:ng)=matmul(GAR3(:ng,:ng),TI(:ng,:ng)) R(:ng,:ng)=matmul(GAR4(:ng,:ng),TI(:ng,:ng)) allocate(S13(13*ng,13*ng)) S13(:,:)=0.0d0 ! 13*ng,13*ng do i=1,13 S13((i-1)*ng+1:i*ng,(i-1)*ng+1:i*ng)=S(:ng,:ng) enddo L(:ng,ng+1:14*ng)=matmul(GAR3(:ng,ng+1:14*ng),S13(:13*ng,:13*ng)) R(:ng,ng+1:14*ng)=matmul(GAR4(:ng,ng+1:14*ng),S13(:13*ng,:13*ng)) !---- ! scratch storage deallocation !---- deallocate(S13,MAT2,MAT1,Up,Um,Vp,Vm,GAR4,GAR3,GAR2,GAR1,Np,Nm,Mp,Mm,S, & & Lambda,DI,TI,T,T_r,F) end subroutine NSSLR3