*DECK NSS2TR SUBROUTINE NSS2TR(ITRIAL,NEL,NMIX,MAT,XX,IQFR,QFR,DIFF,SIGR,SIGT, 1 FD,A11) * *----------------------------------------------------------------------- * *Purpose: * Assembly of non-leakage system matrices for the nodal expansion method. * *Copyright: * Copyright (C) 2021 Ecole Polytechnique de Montreal * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version * *Author(s): A. Hebert * *Parameters: input * ITRIAL type of base (=1: polynomial; =2: hyperbolic). * NEL number of nodes * NMIX number of mixtures * MAT node mixtures * XX node widths * IQFR boundary conditions * QFR albedo functions * DIFF diffusion coefficients. * SIGR macroscopic removal cross section. * SIGT macroscopic cross section. * FD discontinuity factors * *Parameters: output * A11 assembly matrix. * *----------------------------------------------------------------------- * INTEGER ITRIAL(NMIX),NEL,NMIX,MAT(NEL),IQFR(6,NEL) REAL XX(NEL),QFR(6,NEL),DIFF(NMIX),SIGR(NMIX),SIGT(NMIX), 1 FD(NMIX,2),A11(5*NEL,5*NEL) * A11(:5*NEL,:5*NEL)=0.0 NUM1=0 DO KEL=1,NEL IBM=MAT(KEL) SIGG=SIGT(IBM) ETA=XX(KEL)*SQRT(SIGR(IBM)/DIFF(IBM)) ! WEIGHT RESIDUAL EQUATIONS: A11(NUM1+1,NUM1+1)=SIGG A11(NUM1+2,NUM1+2)=SIGG/12.0 A11(NUM1+3,NUM1+3)=SIGG/20.0 IF(ITRIAL(IBM) == 1) THEN A11(NUM1+2,NUM1+4)=-SIGG/120.0 A11(NUM1+3,NUM1+5)=-SIGG/700.0 ELSE ALP1=ETA*COSH(ETA/2.0)-2.0*SINH(ETA/2.0) ALP2=((12.0+ETA**2)*SINH(ETA/2.0)-6.0*ETA*COSH(ETA/2.0))/ETA A11(NUM1+2,NUM1+4)=SIGG*ALP1/(ETA**2) A11(NUM1+3,NUM1+5)=SIGG*ALP2/(ETA**2) ENDIF NUM1=NUM1+5 ENDDO ! continuity relations: NUM1=0 DO KEL=1,NEL-1 IBM=MAT(KEL) IBMP=MAT(KEL+1) DIDD=DIFF(IBM) DIDDP=DIFF(IBMP) ETA=XX(KEL)*SQRT(SIGR(IBM)/DIDD) ETAP=XX(KEL+1)*SQRT(SIGR(IBMP)/DIDDP) NUM2=NUM1+5 ! flux continuity: FDP=FD(IBM,2) FDM=FD(IBMP,1) A11(NUM1+4,NUM1+1)=-FDP A11(NUM1+4,NUM1+2)=-FDP/2.0 A11(NUM1+4,NUM1+3)=-FDP/2.0 A11(NUM1+4,NUM2+1)=FDM A11(NUM1+4,NUM2+2)=-FDM/2.0 A11(NUM1+4,NUM2+3)=FDM/2.0 IF(ITRIAL(IBM) == 2) THEN ALP1=ETA*COSH(ETA/2.0)-2.0*SINH(ETA/2.0) A11(NUM1+4,NUM1+4)=-FDP*SINH(ETA/2.0) A11(NUM1+4,NUM1+5)=-FDP*ALP1/ETA ENDIF IF(ITRIAL(IBMP) == 2) THEN ALP1P=ETAP*COSH(ETAP/2.0)-2.0*SINH(ETAP/2.0) A11(NUM1+4,NUM2+4)=-FDM*SINH(ETAP/2.0) A11(NUM1+4,NUM2+5)=FDM*ALP1P/ETAP ENDIF NUM1=NUM1+5 ENDDO ! left boundary condition: IBM=MAT(1) ETA=XX(1)*SQRT(SIGR(IBM)/DIFF(IBM)) IF((IQFR(1,1) == -1).OR.(IQFR(1,1) > 0)) THEN ! VOID AFACTOR=QFR(1,1) A11(NUM1+4,1)=-AFACTOR A11(NUM1+4,2)=AFACTOR/2.0 A11(NUM1+4,3)=-AFACTOR/2.0 IF(ITRIAL(IBM) == 2) THEN ALP1=ETA*COSH(ETA/2.0)-2.0*SINH(ETA/2.0) A11(NUM1+4,4)=AFACTOR*SINH(ETA/2.0) A11(NUM1+4,5)=-AFACTOR*ALP1/ETA ENDIF ENDIF ! right boundary condition: IBM=MAT(NEL) ETA=XX(NEL)*SQRT(SIGR(IBM)/DIFF(IBM)) IF((IQFR(2,NEL) == -1).OR.(IQFR(2,NEL) > 0)) THEN NUM2=5*(NEL-1) ! VOID AFACTOR=QFR(2,NEL) A11(NUM1+5,NUM2+1)=-AFACTOR A11(NUM1+5,NUM2+2)=-AFACTOR/2.0 A11(NUM1+5,NUM2+3)=-AFACTOR/2.0 IF(ITRIAL(IBM) == 2) THEN ALP1=ETA*COSH(ETA/2.0)-2.0*SINH(ETA/2.0) A11(NUM1+5,NUM2+4)=-AFACTOR*SINH(ETA/2.0) A11(NUM1+5,NUM2+5)=-AFACTOR*ALP1/ETA ENDIF ENDIF RETURN END SUBROUTINE NSS2TR