*DECK FLDARN SUBROUTINE FLDARN (FLDATV,IPTRK,IPSYS,IPFLUX,LL4,NUN,NGRP,LMOD, 1 IBLSZ,ADJ,IMPX,EPSOUT,MAXOUT,EVECT,FKEFFV) * *----------------------------------------------------------------------- * *Purpose: * Solution of a multigroup eigenvalue system for the calculation of the * LMOD first orthogonal harmonics of the diffusion or SPN equation. * Use the implicit restarted Arnoldi method (IRAM). * *Copyright: * Copyright (C) 2020 Ecole Polytechnique de Montreal * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version * *Author(s): A. Hebert * *Parameters: input * FLDATV function pointer for the multiplication of A^(-1)B times the * harmonic flux * IPTRK L_TRACK pointer to the BIVAC tracking information. * IPSYS L_SYSTEM pointer to system matrices. * IPFLUX L_FLUX pointer to the solution. * LL4 order of the system matrices. * NUN number of unknowns in each energy group. * NGRP number of energy groups. * LMOD number of orthogonal harmonics to compute. * IBLSZ block size of the Arnoldi Hessenberg matrix. * ADJ adjoint calculation flag. * IMPX print parameter: =0: no print; =1: minimum printing. * EPSOUT convergence criteria for the flux. * MAXOUT maximum number of outer iterations. * EVECT initial estimate of the unknown vector. * *Parameters: output * EVECT converged unknown vector. * FKEFFV effective multiplication factor of each harmonic. * *Reference: * J. BAGLAMA, "Augmented Block Householder Arnoldi Method," * Linear Algebra Appl., 429, Issue 10, 2315-2334 (2008). * *----------------------------------------------------------------------- * USE GANLIB *---- * SUBROUTINE ARGUMENTS *---- TYPE(C_PTR) IPTRK,IPSYS,IPFLUX INTEGER LL4,NUN,NGRP,LMOD,IBLSZ,IMPX,MAXOUT LOGICAL ADJ REAL EPSOUT COMPLEX EVECT(NUN,NGRP,LMOD),FKEFFV(LMOD) *---- * LOCAL VARIABLES *---- INTERFACE FUNCTION FLDATV(F,N,IBLSZ,ITER,IPTRK,IPSYS,IPFLUX) RESULT(X) USE GANLIB INTEGER, INTENT(IN) :: N,IBLSZ,ITER REAL(KIND=8), DIMENSION(N,IBLSZ), INTENT(IN) :: F REAL(KIND=8), DIMENSION(N,IBLSZ) :: X TYPE(C_PTR) IPTRK,IPSYS,IPFLUX END FUNCTION FLDATV END INTERFACE REAL TIME(2) REAL(KIND=8) DEPSOUT CHARACTER(LEN=8) TEXT8 TYPE(C_PTR) JPFLUX,KPFLUX,MPFLUX *---- * ALLOCATABLE ARRAYS *---- REAL, ALLOCATABLE, DIMENSION(:) :: GAR COMPLEX(KIND=8), ALLOCATABLE, DIMENSION(:,:) :: V, D *---- * SCRATCH STORAGE ALLOCATION *---- N=LL4*NGRP ALLOCATE(V(N,LMOD),D(LMOD,LMOD),GAR(NUN)) *---- * SET TIMER *---- * TIME(1) : CPU TIME FOR THE SOLUTION OF LINEAR SYSTEMS. * TIME(2) : CPU TIME FOR BILINEAR PRODUCT EVALUATIONS. TIME(1)=0.0 TIME(2)=0.0 CALL LCMPUT(IPFLUX,'CPU-TIME',2,2,TIME) *---- * FLUX INITIALIZATION *---- DO IMOD=1,LMOD V(:N,IMOD)=1.0D0 V(1:MIN(IBLSZ,IMOD)-1,IMOD)=0.0D0 ENDDO CALL LCMLEN(IPFLUX,'MODE',ILONG,ITYLCM) IF(ILONG.GT.0) THEN DO IMOD=1,LMOD JPFLUX=LCMGID(IPFLUX,'MODE') CALL LCMLEL(JPFLUX,IMOD,ILONG,ITYLCM) IF(ILONG.EQ.0) CYCLE KPFLUX=LCMGIL(JPFLUX,IMOD) IF(ADJ) THEN CALL LCMLEN(KPFLUX,'AFLUX',LENA,ITYLCM) IF(LENA.EQ.0) CYCLE MPFLUX=LCMGID(KPFLUX,'AFLUX') DO IGR=1,NGRP IF(ITYLCM.EQ.2) THEN CALL LCMGDL(MPFLUX,IGR,GAR) EVECT(:NUN,IGR,IMOD)=GAR(:NUN) ELSE IF(ITYLCM.EQ.6) THEN CALL LCMGDL(MPFLUX,IGR,EVECT(1,IGR,IMOD)) ENDIF ENDDO ELSE CALL LCMLEN(KPFLUX,'FLUX',LEND,ITYLCM) IF(LEND.EQ.0) CYCLE MPFLUX=LCMGID(KPFLUX,'FLUX') DO IGR=1,NGRP IF(ITYLCM.EQ.2) THEN CALL LCMGDL(MPFLUX,IGR,GAR) EVECT(:NUN,IGR,IMOD)=GAR(:NUN) ELSE IF(ITYLCM.EQ.6) THEN CALL LCMGDL(MPFLUX,IGR,EVECT(1,IGR,IMOD)) ENDIF ENDDO ENDIF DO IGR=1,NGRP DO IUN=1,LL4 IOF=(IGR-1)*LL4+IUN V(IOF,IMOD)=EVECT(IUN,IGR,IMOD) ENDDO ENDDO ENDDO ENDIF *---- * CALL IRAM SOLVER *---- DEPSOUT=EPSOUT CALL ALBEIGS(FLDATV,N,IBLSZ,LMOD,MAXOUT,DEPSOUT,IMPX,ITER,V,D, 1 IPTRK,IPSYS,IPFLUX) DO IMOD=1,LMOD FKEFFV(IMOD)=CMPLX(D(IMOD,IMOD),KIND=4) DO IGR=1,NGRP DO IUN=1,LL4 IOF=(IGR-1)*LL4+IUN EVECT(IUN,IGR,IMOD)=CMPLX(V(IOF,IMOD),KIND=4) ENDDO ENDDO ENDDO *---- * PRINTOUTS *---- IF(IMPX.GE.1) THEN CALL LCMGET(IPFLUX,'CPU-TIME',TIME) WRITE (6,650) ITER,TIME(1),TIME(2),TIME(1)+TIME(2) WRITE (6,670) (FKEFFV(IMOD),IMOD=1,LMOD) ENDIF IF(IMPX.GE.3) THEN TEXT8=' DIRECT' IF(ADJ) TEXT8=' ADJOINT' DO IMOD=1,LMOD WRITE (6,'(/A8,13H HARMONIC NB.,I3/)') TEXT8,IMOD DO IGR=1,NGRP WRITE (6,680) IGR,(REAL(EVECT(I,IGR,IMOD)),I=1,LL4) ENDDO ENDDO ENDIF *---- * SCRATCH STORAGE DEALLOCATION *---- DEALLOCATE(GAR,D,V) RETURN * 650 FORMAT(/31H FLDARN: CONVERGENCE OF IRAM IN,I5,11H ITERATIONS/ 1 9X,54HCPU TIME USED TO SOLVE THE TRIANGULAR LINEAR SYSTEMS =, 2 F10.3/23X,34HTO COMPUTE THE BILINEAR PRODUCTS =,F10.3,20X, 3 16HTOTAL CPU TIME =,F10.3) 670 FORMAT(//21H FLDARN: EIGENVALUES:/(5X,1P,E17.10,3H + ,E17.10,1Hi)) 680 FORMAT(43H FLDARN: EIGENVECTOR CORRESPONDING TO GROUP,I4// 1 (5X,1P,8E14.5)) END