*DECK XDRH20 SUBROUTINE XDRH20 (IBIHET,NUN,IR1,NMILG,NREG,NREG2,NG,NSMAX, 1 KEYFLX,NS,IDIL,MIXGR,IBI,FRACT,VOLK,SIGMA,NCO,RRRR,QKOLD,QKDEL, 2 PKL,COEF,SUNKNO,FLUAS) * *----------------------------------------------------------------------- * *Purpose: * Calculation of the macro-source for the Hebert or Sanchez-Pomraning * double heterogeneity model (part 2). * *Copyright: * Copyright (C) 2007 Ecole Polytechnique de Montreal * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version * *Author(s): A. Hebert * *Parameters: input * IBIHET type of double-heterogeneity method (=1 Sanchez-Pomraning * model; =2 Hebert model). * NUN number of unknown in the system. * IR1 number of mixtures in the domain. * NMILG number of composite mixtures in the domain. * NREG number of volumes in the composite geometry. * NREG2 number of volumes in the macro geometry. * NG number of different kind of micro structures. A kind of * micro structure is characterized by the radius of its * micro volumes. All the micro volumes of the same kind * should own the same nuclear properties in a given macro * volume. * NSMAX maximum number of volumes (tubes or shells) in each kind of * micro structure. * KEYFLX flux elements in unknown system. * NS number of volumes in each kind of micro structure. * IDIL elementary mixture indices in the diluent of the composite * mixtures. * MIXGR elementary mixture indices in the micro structures. * IBI type of mixture in each volume of the macro geometry. * If IBI(IKK) is greater than IR1, the volume IKK contains a * micro structure. * FRACT volumic fractions of the micro volumes. * VOLK volumic fractions of the tubes or shells in the micro volumes. * SIGMA equivalent total macroscopic cross section in each mixture. * NCO number of volumes in each composite mixture. * QKOLD information computed by XDRH11. * QKDEL information computed by XDRH11 or XDRH12. * PKL information computed by XDRH11 or XDRH12. * RRRR information computed by XDRH11 or XDRH12. * COEF information computed by XDRH11 or XDRH12. * SUNKNO sources defined in the composite geometry. * *Parameters: output * FLUAS equivalent macro-source. * *----------------------------------------------------------------------- * *---- * SUBROUTINE ARGUMENTS *---- INTEGER IBIHET,NUN,IR1,NMILG,NREG,NREG2,NG,NSMAX,KEYFLX(NREG), 1 NS(NG),IDIL(NMILG),MIXGR(NSMAX,NG,NMILG),IBI(NREG2),NCO(NMILG) REAL FRACT(NG,IR1+NMILG),VOLK(NG,NSMAX),SIGMA(0:IR1+NMILG), 1 RRRR(NMILG),QKOLD(NG,NSMAX,NMILG),QKDEL(NG,NSMAX,NMILG), 2 PKL(NG,NSMAX,NSMAX,NMILG),SUNKNO(NUN),FLUAS(NREG2) DOUBLE PRECISION COEF(1+NG*NSMAX,1+NG*NSMAX,NMILG) *---- * LOCAL VARIABLES *---- DOUBLE PRECISION DP0,DDOT DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: RHS *---- * SCRATCH STORAGE ALLOCATION *---- ALLOCATE(RHS(1+NG*NSMAX)) * IF(IBIHET.EQ.1) THEN GO TO 10 ELSE IF(IBIHET.EQ.2) THEN GO TO 60 ELSE CALL XABORT('XDRH20: INVALID DOUBLE HETEROGENEITY METHOD.') ENDIF *---- * COMPUTE THE EQUIVALENT MACRO-SOURCE (SANCHEZ-POMRANING METHOD). *---- 10 IND1=NREG2 DO 50 I=1,NREG2 MIL=IBI(I) IF(MIL.GT.IR1) THEN IBM=MIL-IR1 INDGAR=IND1 DILF=1.0 DP0=0.0D0 DO 30 J=1,NG FRT=FRACT(J,MIL) DILF=DILF-FRT IF(FRT.LE.0.00001) GO TO 30 DO 20 K=1,NS(J) DP0=DP0+FRT*VOLK(J,K)*QKOLD(J,K,IBM)*SIGMA(MIXGR(K,J,IBM)) 20 CONTINUE IND1=IND1+NS(J) 30 CONTINUE DP0=DP0+DILF*SIGMA(IDIL(IBM)) RHS(1)=DILF*SUNKNO(KEYFLX(I))/DP0 IND1=INDGAR IND2=1 DO 40 J=1,NG FRT=FRACT(J,MIL) IF(FRT.LE.0.00001) GO TO 40 DO K=1,NS(J) IUNK=KEYFLX(IND1+K) RHS(1)=RHS(1)+FRT*VOLK(J,K)*QKOLD(J,K,IBM)*SUNKNO(IUNK)/DP0 RHS(IND2+K)=0.0D0 DO N=1,NS(J) IUNK=KEYFLX(IND1+N) RHS(IND2+K)=RHS(IND2+K)+PKL(J,K,N,IBM)*SUNKNO(IUNK) ENDDO ENDDO IND1=IND1+NS(J) IND2=IND2+NS(J) 40 CONTINUE DP0=DDOT(NCO(IBM),COEF(1,1,IBM),1+NG*NSMAX,RHS,1) FLUAS(I)=REAL(DP0)*SIGMA(IBI(I))*RRRR(IBM) ELSE FLUAS(I)=SUNKNO(KEYFLX(I)) ENDIF 50 CONTINUE RETURN *---- * COMPUTE THE EQUIVALENT MACRO-SOURCE (HEBERT METHOD). *---- 60 IND1=NREG2 DO 100 I=1,NREG2 MIL=IBI(I) IF(MIL.GT.IR1) THEN IBM=MIL-IR1 INDGAR=IND1 DILF=1.0 DP0=0.0D0 DO 80 J=1,NG FRT=FRACT(J,MIL) DILF=DILF-FRT IF(FRT.LE.0.00001) GO TO 80 DO 70 K=1,NS(J) DP0=DP0+FRT*VOLK(J,K)*QKDEL(J,K,IBM)*SIGMA(MIXGR(K,J,IBM)) 70 CONTINUE IND1=IND1+NS(J) 80 CONTINUE DP0=DP0+DILF*SIGMA(IDIL(IBM)) RHS(1)=DILF*SUNKNO(KEYFLX(I))/DP0 IND1=INDGAR IND2=1 DO 90 J=1,NG FRT=FRACT(J,MIL) IF(FRT.LE.0.00001) GO TO 90 DO K=1,NS(J) IUNK=KEYFLX(IND1+K) RHS(1)=RHS(1)+FRT*VOLK(J,K)*QKDEL(J,K,IBM)*SUNKNO(IUNK)/DP0 RHS(IND2+K)=0.0D0 DO N=1,NS(J) IUNK=KEYFLX(IND1+N) RHS(IND2+K)=RHS(IND2+K)+PKL(J,K,N,IBM)*SUNKNO(IUNK) ENDDO ENDDO IND1=IND1+NS(J) IND2=IND2+NS(J) 90 CONTINUE DP0=DDOT(NCO(IBM),COEF(1,1,IBM),1+NG*NSMAX,RHS,1) FLUAS(I)=REAL(DP0)*SIGMA(IBI(I)) ELSE FLUAS(I)=SUNKNO(KEYFLX(I)) ENDIF 100 CONTINUE *---- * SCRATCH STORAGE DEALLOCATION *---- DEALLOCATE(RHS) RETURN END