*DECK SYBHTK SUBROUTINE SYBHTK (NA,NX,NREG,SIDE,RAYRE,ILIGN,INORM,IQW,LR,Z,LI, 1 IZ,PREC) * *----------------------------------------------------------------------- * *Purpose: * Compute the tracking information related to an hexagonal heterogeneous * cell. * *Copyright: * Copyright (C) 2008 Ecole Polytechnique de Montreal * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version * *Author(s): A. Hebert * *Parameters: input * NA number of angles in (0,$\\pi$/6). * NX number of tracks in each sub domain for a given angle. * NREG number of regions in the cell. * SIDE side of an hexagon. * RAYRE radius of each cylinder (RAYRE(1)=0.0). * ILIGN tracking print flag (=1 to print the tracking). * INORM track normalization flag (=1 to avoid track normalization). * IQW equal weight quadrature flag (=1 to use equal weight * quadratures in angle and space). * *Parameters: output * LR exact size of array Z with * L.LE.4+3*NA*(13+2*(NREG+1)*NX*NREG). * Z real tracking information. * Z(1) to Z(4) contain the numerical orthonormalization * factors. * LI size of array IZ with * L.LE.NREG+4+3*NA*(2+(NREG+1)*(3+2*NREG)). * IZ integer tracking information. * IZ(1)=5, IZ(2)=NREG+1 and IZ(3)=3 for an hexagonal cell. * PREC accuracy obtained if the non-normalized tracks are used * to integrate the volumes. * *----------------------------------------------------------------------- * *---- * SUBROUTINE ARGUMENTS *---- INTEGER NA,NX,NREG,ILIGN,INORM,IQW,LR,LI,IZ(*) REAL SIDE,RAYRE(NREG),Z(*),PREC *---- * LOCAL VARIABLES *---- PARAMETER (PIO2=1.570796327,PI=3.14159265358979,SQ3=1.73205080757) REAL ZX(64),WX(64),ZA(64),WA(64),ZXJ(64),WXJ(64) REAL, ALLOCATABLE, DIMENSION(:) :: VAP *---- * SCRATCH STORAGE ALLOCATION *---- ALLOCATE(VAP(NREG)) * NA3=3*NA IF(NX.GT.10) CALL XABORT('SYBHTK: NX IS GREATER THAN 10.') IF(NA.GT.64) CALL XABORT('SYBHTK: NA IS GREATER THAN 64.') IF(2.0*RAYRE(NREG).GT.SQ3*SIDE) CALL XABORT('SYBHTK: A RADIUS IS' 1 //' GREATER THAN HALF A SIDE.') *---- * COMPUTE VOLUMES *---- VOL=1.5*SQ3*SIDE**2 DO 10 IR=NREG,1,-1 R2=PI*RAYRE(IR)**2 Z(IR)=VOL-R2 VOL=R2 10 CONTINUE * IF(IQW.EQ.0) THEN * GAUSS-LEGENDRE AND GAUSS-JACOBI INTEGRATION POINTS. CALL ALGPT(NX,-1.,1.,ZX(1),WX(1)) CALL ALGJP(NX,ZXJ,WXJ) CALL ALGPT(NA,-1.,-1./3.,ZA(1),WA(1)) CALL ALGPT(NA,-1./3.,1./3.,ZA(NA+1),WA(NA+1)) CALL ALGPT(NA,1./3.,1.,ZA(2*NA+1),WA(2*NA+1)) ELSE * EQUAL WEIGHT INTEGRATION POINTS. DO 15 I=1,NX ZX(I)=(2.0*REAL(I)-1.0)/REAL(NX)-1.0 WX(I)=2.0/REAL(NX) ZXJ(I)=0.5*(2.0*REAL(I)-1.0)/REAL(NX) WXJ(I)=ZXJ(I)/REAL(NX) 15 CONTINUE DO 20 I=1,NA3 ZA(I)=(2.0*REAL(I)-1.0)/REAL(NA3)-1.0 WA(I)=2.0/REAL(NA3) 20 CONTINUE ENDIF IZ(1)=5 IZ(2)=NREG+1 IZ(3)=3 IZ(4)=NA3 PREC=0.0 LI=4 LR=NREG+4 *---- * INTEGRATION IN ANGLE FROM 0 TO PI/2 *---- ZN1=0.0 ZN2=0.0 ZN3=0.0 DO 350 IA=1,NA3 PHI=0.5*PIO2*(ZA(IA)+1.0) SI=SIN(PHI) CO=COS(PHI) TA=SI/CO FACT1=(SQ3/TA)/(SQ3/TA-1.0) FACT2=(SQ3/TA)/(SQ3/TA+1.0) ZN1=ZN1+SI*WA(IA) ZN2=ZN2+SI*SI*WA(IA) ZN3=ZN3+SI*SI*SI*WA(IA) Z(LR+1:LR+6)=0.0 Z(LR+9)=SI Z(LR+10)=CO IF(PHI.LT.PI/6.) THEN Z(LR+11)=COS(PHI+PI/6.) Z(LR+12)=SIN(PHI+PI/6.) ELSE IF(PHI.LT.PI/3.) THEN Z(LR+1)=COS(PHI-PI/6.) Z(LR+2)=SIN(PHI-PI/6.) ELSE Z(LR+3)=SI Z(LR+4)=CO ENDIF Z(LR+13)=WA(IA) LR=LR+13 *---- * FIRST ANGULAR DOMAIN (0 TO PI/6) *---- L4=LI+1 IZ(LI+1)=0 IZ(LI+2)=0 LI=LI+2 IF(PHI.GT.PIO2/3.0) GO TO 120 X1=0.0 XLIM=MIN(SIDE,0.5*SIDE*(SQ3/TA-1.0)) DLIM=0.5*SIDE*SQ3*CO+(0.5*SIDE-XLIM)*SI DO 100 K0=NREG,1,-1 KMAX=NREG-K0+1 X2=MIN(XLIM,XLIM-(RAYRE(K0)-DLIM)/SI) L3=LR+1 L5=LI+1 LI=LI+3 VAP(:NREG)=0.0 DO 50 IX=1,NX IF(K0.EQ.NREG) THEN S=0.5*(X2-X1)*SI*WX(IX) X=X1+0.5*(X2-X1)*(1.0+ZX(IX)) ELSE * FLURIG CHANGE OF VARIABLE. S=2.0*(X2-X1)*SI*WXJ(IX) X=X1+(X2-X1)*ZXJ(IX)**2 ENDIF Z(LR+1)=S*WA(IA) LR=LR+1 C=0.5*SIDE*SQ3*SI-(0.5*SIDE-X)*CO D=0.5*SIDE*SQ3*CO+(0.5*SIDE-X)*SI D=D*D SUM=0.0 CORDE=0.0 DO 30 K=NREG,K0+1,-1 RR=RAYRE(K)**2-D CORDE=SQRT(RR) DEL=C-CORDE SUM=SUM+DEL Z(LR+NREG-K+1)=DEL VAP(K)=VAP(K)+DEL*S C=CORDE 30 CONTINUE IF(KMAX.NE.1) THEN DEL=2.0*CORDE SUM=SUM+DEL Z(LR+KMAX)=DEL VAP(K)=VAP(K)+DEL*S DO 40 I=1,KMAX-2 DEL=Z(LR+KMAX-I) SUM=SUM+DEL Z(LR+KMAX+I)=DEL VAP(K+I)=VAP(K+I)+DEL*S 40 CONTINUE ENDIF LR=LR+2*KMAX-1 DEL=X*FACT1/CO-SUM Z(LR)=DEL VAP(NREG)=VAP(NREG)+DEL*S 50 CONTINUE DO 60 K=KMAX-1,1-KMAX,-1 IZ(LI+K+KMAX)=5+ABS(K)+1+NREG-KMAX 60 CONTINUE LI=LI+2*KMAX IZ(L5)=2*KMAX-1 IZ(L5+1)=NX IZ(L5+2)=4 ! ISURF IZ(LI)=5 ! JSURF *---- * VOLUME NORMALIZATION *---- IF((INORM.EQ.0).AND.(K0.LT.NREG)) THEN DLIM1=0.5*SIDE*SQ3*CO+(0.5*SIDE-X2)*SI DLIM2=0.5*SIDE*SQ3*CO+(0.5*SIDE-X1)*SI VW1=0.0 SUMVAP=0.0 DO 70 I=K0,NREG-1 SUMVAP=SUMVAP+VAP(I) RW=RAYRE(I+1) VEX1=RW*RW*ACOS(DLIM1/RW)-DLIM1*SQRT(RW*RW-DLIM1*DLIM1) IF(RW.GT.DLIM2) 1 VEX1=VEX1-(RW*RW*ACOS(DLIM2/RW)-DLIM2*SQRT(RW*RW-DLIM2*DLIM2)) SUM=(VEX1-VW1)/VAP(I) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX1-VW1)/(1.5*SQ3*SIDE**2)) VW1=VEX1 VAP(I)=SUM 70 CONTINUE VEX1=0.5*(SIDE*SQ3*SI-(SIDE-X1-X2)*CO)*(X2-X1)*SI VEX2=0.5*FACT1*TA*(X2*X2-X1*X1)-VEX1 SUM=(VEX1-0.5*VW1)/(VEX1-0.5*SUMVAP) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX1-0.5*VW1)/(1.5*SQ3*SIDE**2)) VEX1=SUM SUM=(VEX2-0.5*VW1)/(VEX2-0.5*SUMVAP) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX2-0.5*VW1)/(1.5*SQ3*SIDE**2)) VEX2=SUM DO 90 IX=1,NX KMAX=(IZ(L5)+1)/2 Z(L3+KMAX)=Z(L3+KMAX)*VAP(K0) DO 80 I=1,KMAX-2 Z(L3+KMAX-I)=Z(L3+KMAX-I)*VAP(K0+I) Z(L3+KMAX+I)=Z(L3+KMAX+I)*VAP(K0+I) 80 CONTINUE Z(L3+1)=Z(L3+1)*VEX1 Z(L3+2*KMAX-1)=Z(L3+2*KMAX-1)*VEX2 L3=L3+2*KMAX 90 CONTINUE ENDIF IZ(L4)=IZ(L4)+1 IF(X2.GE.XLIM) GO TO 120 X1=X2 100 CONTINUE *---- * SECOND ANGULAR DOMAIN (PI/6 TO PI/3) *---- 120 IF((PHI.LE.PI/6.0).OR.(PHI.GT.2.0*PIO2/3.0)) GO TO 240 X1=0.5*SIDE*(SQ3/TA-1.0) XLIM=SIDE DLIM=0.5*SIDE*SQ3*CO+(0.5*SIDE-XLIM)*SI DO 230 K0=NREG,1,-1 KMAX=NREG-K0+1 X2=MIN(XLIM,XLIM-(RAYRE(K0)-DLIM)/SI) IF(X2.LE.X1) GO TO 230 L3=LR+1 L5=LI+1 LI=LI+3 VAP(:NREG)=0.0 DO 150 IX=1,NX IF(K0.EQ.NREG) THEN S=0.5*(X2-X1)*SI*WX(IX) X=X1+0.5*(X2-X1)*(1.0+ZX(IX)) ELSE * FLURIG CHANGE OF VARIABLE. S=2.0*(X2-X1)*SI*WXJ(IX) X=X1+(X2-X1)*ZXJ(IX)**2 ENDIF Z(LR+1)=S*WA(IA) LR=LR+1 C=0.5*SIDE*SQ3*SI-(0.5*SIDE-X)*CO D=0.5*SIDE*SQ3*CO+(0.5*SIDE-X)*SI D=D*D SUM=0.0 CORDE=0.0 DO 130 K=NREG,K0+1,-1 RR=RAYRE(K)**2-D CORDE=SQRT(RR) DEL=C-CORDE SUM=SUM+DEL Z(LR+NREG-K+1)=DEL VAP(K)=VAP(K)+DEL*S C=CORDE 130 CONTINUE IF(KMAX.NE.1) THEN DEL=2.0*CORDE SUM=SUM+DEL Z(LR+KMAX)=DEL VAP(K)=VAP(K)+DEL*S DO 140 I=1,KMAX-2 DEL=Z(LR+KMAX-I) SUM=SUM+DEL Z(LR+KMAX+I)=DEL VAP(K+I)=VAP(K+I)+DEL*S 140 CONTINUE ENDIF LR=LR+2*KMAX-1 DEL=(X+SIDE)*FACT2/CO-SUM Z(LR)=DEL VAP(NREG)=VAP(NREG)+DEL*S 150 CONTINUE DO 160 K=KMAX-1,1-KMAX,-1 IZ(LI+K+KMAX)=5+ABS(K)+1+NREG-KMAX 160 CONTINUE LI=LI+2*KMAX IZ(L5)=2*KMAX-1 IZ(L5+1)=NX IZ(L5+2)=4 ! ISURF IZ(LI)=0 ! JSURF *---- * VOLUME NORMALIZATION *---- IF((INORM.EQ.0).AND.(K0.LT.NREG)) THEN DLIM1=0.5*SIDE*SQ3*CO+(0.5*SIDE-X2)*SI DLIM2=0.5*SIDE*SQ3*CO+(0.5*SIDE-X1)*SI VW1=0.0 SUMVAP=0.0 DO 200 I=K0,NREG-1 SUMVAP=SUMVAP+VAP(I) RW=RAYRE(I+1) VEX1=RW*RW*ACOS(DLIM1/RW)-DLIM1*SQRT(RW*RW-DLIM1*DLIM1) IF(RW.GT.DLIM2) 1 VEX1=VEX1-(RW*RW*ACOS(DLIM2/RW)-DLIM2*SQRT(RW*RW-DLIM2*DLIM2)) SUM=(VEX1-VW1)/VAP(I) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX1-VW1)/(1.5*SQ3*SIDE**2)) VW1=VEX1 VAP(I)=SUM 200 CONTINUE VEX1=0.5*(SIDE*SQ3*SI-(SIDE-X1-X2)*CO)*(X2-X1)*SI VEX2=0.5*FACT2*TA*(X2-X1)*(X1+X2+2.0*SIDE)-VEX1 SUM=(VEX1-0.5*VW1)/(VEX1-0.5*SUMVAP) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX1-0.5*VW1)/(1.5*SQ3*SIDE**2)) VEX1=SUM SUM=(VEX2-0.5*VW1)/(VEX2-0.5*SUMVAP) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX2-0.5*VW1)/(1.5*SQ3*SIDE**2)) VEX2=SUM DO 220 IX=1,NX KMAX=(IZ(L5)+1)/2 Z(L3+KMAX)=Z(L3+KMAX)*VAP(K0) DO 210 I=1,KMAX-2 Z(L3+KMAX-I)=Z(L3+KMAX-I)*VAP(K0+I) Z(L3+KMAX+I)=Z(L3+KMAX+I)*VAP(K0+I) 210 CONTINUE Z(L3+1)=Z(L3+1)*VEX1 Z(L3+2*KMAX-1)=Z(L3+2*KMAX-1)*VEX2 L3=L3+2*KMAX 220 CONTINUE ENDIF IZ(L4)=IZ(L4)+1 X1=X2 230 CONTINUE *---- * THIRD ANGULAR DOMAIN (PI/3 TO PI/2) *---- 240 IF(PHI.LE.2.0*PIO2/3.0) GO TO 350 X1=SQ3*SIDE/TA XLIM=0.5*(SIDE+X1) DO 340 K0=NREG,1,-1 KMAX=NREG-K0+1 X2=XLIM-RAYRE(K0)/SI IF(X2.LE.X1) GO TO 340 L3=LR+1 L5=LI+1 LI=LI+3 VAP(:NREG)=0.0 DO 270 IX=1,NX IF(K0.EQ.NREG) THEN S=0.5*(X2-X1)*SI*WX(IX) X=X1+0.5*(X2-X1)*(1.0+ZX(IX)) ELSE * FLURIG CHANGE OF VARIABLE. S=2.0*(X2-X1)*SI*WXJ(IX) X=X1+(X2-X1)*ZXJ(IX)**2 ENDIF Z(LR+1)=S*WA(IA) LR=LR+1 C=0.5*SIDE*SQ3*SI-(0.5*SIDE-X)*CO D=0.5*SIDE*SQ3*CO+(0.5*SIDE-X)*SI D=D*D SUM=0.0 CORDE=0.0 DO 250 K=NREG,K0+1,-1 RR=RAYRE(K)**2-D CORDE=SQRT(RR) DEL=C-CORDE SUM=SUM+DEL Z(LR+NREG-K+1)=DEL VAP(K)=VAP(K)+DEL*S C=CORDE 250 CONTINUE IF(KMAX.NE.1) THEN DEL=2.0*CORDE SUM=SUM+DEL Z(LR+KMAX)=DEL VAP(K)=VAP(K)+DEL*S DO 260 I=1,KMAX-2 DEL=Z(LR+KMAX-I) SUM=SUM+DEL Z(LR+KMAX+I)=DEL VAP(K+I)=VAP(K+I)+DEL*S 260 CONTINUE ENDIF IF(KMAX.NE.KMAX) CALL XABORT('BUG') LR=LR+2*KMAX-1 DEL=SQ3*SIDE/SI-SUM Z(LR)=DEL VAP(NREG)=VAP(NREG)+DEL*S 270 CONTINUE DO 280 K=KMAX-1,1-KMAX,-1 IZ(LI+K+KMAX)=5+ABS(K)+1+NREG-KMAX 280 CONTINUE LI=LI+2*KMAX IZ(L5)=2*KMAX-1 IZ(L5+1)=NX IZ(L5+2)=4 ! ISURF IZ(LI)=1 ! JSURF *---- * VOLUME NORMALIZATION *---- IF((INORM.EQ.0).AND.(K0.LT.NREG)) THEN DLIM1=0.5*SIDE*SQ3*CO+(0.5*SIDE-X2)*SI DLIM2=0.5*SIDE*SQ3*CO+(0.5*SIDE-X1)*SI VW1=0.0 SUMVAP=0.0 DO 310 I=K0,NREG-1 SUMVAP=SUMVAP+VAP(I) RW=RAYRE(I+1) VEX1=RW*RW*ACOS(DLIM1/RW)-DLIM1*SQRT(RW*RW-DLIM1*DLIM1) IF(RW.GT.DLIM2) 1 VEX1=VEX1-(RW*RW*ACOS(DLIM2/RW)-DLIM2*SQRT(RW*RW-DLIM2*DLIM2)) SUM=(VEX1-VW1)/VAP(I) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX1-VW1)/(1.5*SQ3*SIDE**2)) VW1=VEX1 VAP(I)=SUM 310 CONTINUE VEX1=0.5*(SIDE*SQ3*SI-(SIDE-X1-X2)*CO)*(X2-X1)*SI VEX2=(X2-X1)*SQ3*SIDE-VEX1 SUM=(VEX1-0.5*VW1)/(VEX1-0.5*SUMVAP) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX1-0.5*VW1)/(1.5*SQ3*SIDE**2)) VEX1=SUM SUM=(VEX2-0.5*VW1)/(VEX2-0.5*SUMVAP) PREC=MAX(PREC,ABS(1.0-SUM)*(VEX2-0.5*VW1)/(1.5*SQ3*SIDE**2)) VEX2=SUM DO 330 IX=1,NX KMAX=(IZ(L5)+1)/2 Z(L3+KMAX)=Z(L3+KMAX)*VAP(K0) DO 320 I=1,KMAX-2 Z(L3+KMAX-I)=Z(L3+KMAX-I)*VAP(K0+I) Z(L3+KMAX+I)=Z(L3+KMAX+I)*VAP(K0+I) 320 CONTINUE Z(L3+1)=Z(L3+1)*VEX1 Z(L3+2*KMAX-1)=Z(L3+2*KMAX-1)*VEX2 L3=L3+2*KMAX 330 CONTINUE ENDIF IZ(L4)=IZ(L4)+1 X1=X2 340 CONTINUE 350 CONTINUE ZN1=0.5*ZN1*PIO2 ZN2=0.5*ZN2*PIO2 ZN3=0.5*ZN3*PIO2 Z(NREG+1)=1.0/SQRT(ZN1) Z(NREG+2)=1.0/SQRT(0.75*ZN3-0.7205061948*ZN2*ZN2/ZN1) Z(NREG+3)=Z(NREG+2)*0.8488263632*ZN2/ZN1 Z(NREG+4)=2.0/SQRT(3.0*(ZN1-ZN3)) *---- * TRACKING INFORMATION OUTPUT *---- IF(ILIGN.EQ.1) THEN L1I=IZ(1)-1 L1R=IZ(2)-1 WRITE(6,500) (Z(L1R+I),I=1,4) L1R=L1R+4 L2=0 DO 375 IA=1,NA3 MNT=IZ(L1I+1) L1I=L1I+2 ZSIN=Z(L1R+9) ZCOS=Z(L1R+10) L1R=L1R+13 DO 370 IMNT=1,MNT NH=IZ(L1I+1) NX=IZ(L1I+2) L1I=L1I+3 DO 360 IX=1,NX L2=L2+1 IF((IMNT.EQ.1).AND.(IX.EQ.1)) THEN WRITE(6,510) L2,ZSIN,ZCOS,Z(L1R+1),NH,(Z(L1R+I+1),I=1,NH) ELSE WRITE(6,520) L2,Z(L1R+1),NH,(Z(L1R+I+1),I=1,NH) ENDIF L1R=L1R+NH+1 360 CONTINUE L1I=L1I+NH+1 370 CONTINUE 375 CONTINUE ENDIF *---- * SCRATCH STORAGE DEALLOCATION *---- DEALLOCATE(VAP) RETURN * 500 FORMAT (1H1//30H TRACKING INFORMATION LISTING.//12H NUMERICAL O, 1 27HRTHONORMALIZATION FACTORS =,1P,4E12.4//6H TRACK) 510 FORMAT (1X,I5,7H SIN =,1P,E10.3,7H COS =,E10.3,9H WEIGHT =, 1 E10.3,6H NH =,I3,12H SEGMENTS =,5E10.3:/(80X,5E10.3)) 520 FORMAT (1X,I5,34X,9H WEIGHT =,1P,E10.3,6H NH =,I3,10H SEGMENTS, 1 2H =,5E10.3:/(80X,5E10.3)) END