*DECK THMTRS SUBROUTINE THMTRS(MPTHMI,MPTHM,IMPX,IX,IY,NZ,XBURN,VOLXY,HZ,DTIME, > CFLUX,POROS,FNFU,NFD,NDTOT,IFLUID,SNAME,SCOMP, > IGAP,IFUEL,FNAME,FCOMP,FCOOL,FFUEL,ACOOL, > HD,PCH,MAXITC,MAXIT1,MAXITL,ERMAXT,ERMAXC,SPDIN,TINLET,POULET, > FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,KCONDC,UCONDC, > IHGAP,KHGAP,IHCONV,KHCONV,WTEFF,IFRCDI,ISUBM,FRO,POW,TCOMB,DCOOL, > TCOOL,TSURF) * *----------------------------------------------------------------------- * *Purpose: * Driver of the transient thermal-hydraulics module for a single time * iteration * *Copyright: * Copyright (C) 2013 Ecole Polytechnique de Montreal. * *Author(s): * P. Gallet and A. Hebert * * 08/2023: C. Garrido Modifications to include Molten Salt heat transfer in * coolant * 07/2024: C. Garrido Modifications to include Molten Salt heat transfer * in static fuel * *Parameters: input * MPTHMI directory of the THM object containing steady-state * thermohydraulics data at t-1. * MPTHM directory of the THM object containing steady-state * thermohydraulics data at t. * IMPX printing index (=0 for no print). * IX position of mesh along X direction. * IY position of mesh along Y direction. * NZ number of meshes along Z direction (channel direction). * XBURN burnup distribution in MWday/tonne. * VOLXY mesh area in the radial plane. * HZ Z-directed mesh widths. * DTIME time step in s. * CFLUX critical heat flux in W/m^2. * POROS oxyde porosity. * FNFU number of active fuel rods in the fuel bundle. * NFD number of discretisation points in fuel regions. * NDTOT number of total discretization points in the the fuel * pellet and the cladding. * IFLUID type of fluid (0=H2O; 1=D2O). * FCOOL power density fraction in coolant. * FFUEL power density fraction in fuel. * ACOOL coolant cross section area in m^2. * HD hydraulic diameter of one assembly in m. * PCH heating perimeter in m. * MAXITC maximum number of flow iterations. * MAXIT1 maximum number of conduction iterations. * MAXITL maximum number of center-pellet iterations. * ERMAXT convergence criterion for temperature in fuel pin in K. * ERMAXC convergence criterion for coolant parameters (relative error). * SPDIN inlet flow velocity at t in m/s. * TINLET inlet temperature at t in K. * POULET outlet pressure at t in Pa. * FRACPU plutonium fraction in fuel. * ICONDF fuel conductivity flag (0=Stora-Chenebault or COMETHE/ * 1=user-provided polynomial + inverse term). * NCONDF degree of user-provided fuel conductivity polynomial. * KCONDF polynomial coefficients for fuel conductivity in W/m/K^(k+1) * (except for the two last coefficients which belongs to the * inverse term). * UCONDF required unit of temperature in polynomial for fuel * conductivity (KELVIN or CELSIUS). * ICONDC clad conductivity flag (0=default/1=user-provided * polynomial). * NCONDC degree of user-provided clad conductivity polynomial. * KCONDC polynomial coefficients for clad conductivity in W/m/K^(k+1). * UCONDC required unit of temperature in polynomial for clad * conductivity (KELVIN or CELSIUS). * IHGAP flag indicating HGAP chosen (0=default/1=user-provided). * KHGAP fixed user-provided HGAP value in W/m^2/K. * IHCONV flag indicating HCONV chosen (0=default/1=user-provided). * KHCONV fixed user-provided HCONV value in W/m^2/K. * WTEFF surface temperature's weighting factor in effective fuel * temperature. * IFRCDI flag indicating if average approximation is forced during * fuel conductivity evaluation (0=default/1=average * approximation forced). * ISUBM subcooling model (0: one-phase; 1: Bowring model; 2: Saha- * Zuber model). * FRO radial power form factors. * POW power distribution at t in W. * IGAP Flag indicating if the gap is considered (0=gap/1=no gap) * IFUEL type of fuel (0=UO2/MOX; 1=SALT). * FNAME Name of the molten salt (e.g. "LiF-BeF2") * FCOMP Composition of the molten salt (e.g. "0.66-0.34") * *Parameters: output * TCOMB averaged fuel temperature distribution in K. * DCOOL averaged coolant density distribution in g/cc. * TCOOL averaged coolant temperature distribution in K. * TSURF surface fuel temperature distribution in K. * *----------------------------------------------------------------------- * USE GANLIB USE t_saltdata *---- * SUBROUTINE ARGUMENTS *---- TYPE(C_PTR) MPTHMI,MPTHM INTEGER IMPX,IX,IY,NZ,NFD,NDTOT,IFLUID,MAXITC,MAXIT1,MAXITL,IHGAP, > IGAP,IFUEL REAL XBURN(NZ),VOLXY,HZ(NZ),DTIME,CFLUX,POROS,FNFU(NZ),FFUEL(NZ), > ERMAXT,ERMAXC,FCOOL(NZ),SPDIN,TINLET,POULET,FRACPU, > KCONDF(NCONDF+3),KCONDC(NCONDC+1),KHGAP,KHCONV,WTEFF,FRO(NFD-1), > POW(NZ),TCOMB(NZ),DCOOL(NZ),TCOOL(NZ),TSURF(NZ),DGCOOL(NZ), > HLV(NZ),ACOOL(NZ),PCH(NZ),HD(NZ) CHARACTER UCONDF*12,UCONDC*12 *---- * LOCAL VARIABLES *---- TYPE(tpdata) STP,FTP PARAMETER(KMAXO=100,MAXNPO=40,PES=9.81) REAL ENT(4),RHOINL,MFLXIN,RHOIN0,MFLXIN0,HINLET,HINLE0,MUIN, > DV(NZ),PARAM1,PARAM2,PARAM3,ERRG,ERRP,ERRH,ERR,DELTH,HMINF, > POWLIN(NZ),PHI(NZ),MUT(NZ),RESM(NZ),RESP(NZ),RESH(NZ),QFUEL(NZ), > QCOOL(NZ),TC1,AGM(NZ),PC(NZ),TSAT,PHIC(NZ),TP(NZ),TLC(NZ), > HZC(NZ),XFL(NZ),EPS(NZ),TB,HGSAT,TCLAD(NZ),MFLXT0(NZ),ENTH(NZ), > MFLXT(NZ),SLIP(NZ),K11 INTEGER KWA(NZ) REAL TRE10(MAXNPO),TRE11(MAXNPO),RADD(MAXNPO),XX2(MAXNPO), > XX3(MAXNPO),ZF(2) CHARACTER HSMG*131,SNAME*32,SCOMP*32,FNAME*32,FCOMP*32 REAL XS(4) DATA XS/-0.861136,-0.339981,0.339981,0.861136/ INTEGER IDFM *---- * ALLOCATABLE ARRAYS *---- REAL, ALLOCATABLE, DIMENSION(:) :: VELOT0,DCOOL0,PREST0,ENTHT0, > DLIQT0,VELOT,PREST,ENTHT,TCENTT,DLIQT REAL, ALLOCATABLE, DIMENSION(:,:) :: RAD,TEMPT0,TEMPT *---- * SCRATCH STORAGE ALLOCATION *---- ALLOCATE(RAD(NDTOT-1,NZ),VELOT0(NZ),DCOOL0(NZ),PREST0(NZ), > ENTHT0(NZ),TEMPT0(NDTOT,NZ),DLIQT0(NZ),VELOT(NZ),PREST(NZ), > ENTHT(NZ),TEMPT(NDTOT,NZ),TCENTT(NZ),DLIQT(NZ)) *---- * RECOVER DATA FROM FORMER TIME STEP OR STEADY-STATE CALCULATION IN THM *---- CALL LCMGET(MPTHMI,'DENSITY',DCOOL0) CALL LCMGET(MPTHMI,'PRESSURE',PREST0) CALL LCMGET(MPTHMI,'ENTHALPY',ENTHT0) CALL LCMGET(MPTHMI,'VELOCITIES',VELOT0) CALL LCMGET(MPTHMI,'TEMPERATURES',TEMPT0) CALL LCMGET(MPTHMI,'LIQUID-DENS',DLIQT0) CALL LCMGET(MPTHMI,'POULET',POUT0) CALL LCMGET(MPTHMI,'TINLET',TIN0) CALL LCMGET(MPTHMI,'RADII',RAD) IDFM = 0 *---- * CALCULATE THE INVERSE TIME STEP *---- IF(DTIME.EQ.0.0) THEN CALL XABORT('THMTRS: TIME STEP NOT DEFINED') ELSE DTINV=1.0/DTIME ENDIF *---- * COMPUTE THE INLET FLOW ENTHALPY AND MASS FLOW RATE *---- IF(IFLUID.EQ.0) THEN CALL THMSAT(POULET,TSAT) ELSE IF(IFLUID.EQ.1) THEN CALL THMHST(POULET,TSAT) *CGT TODO: GET SATURATION TEMPERATURE FROM MSTPDB. GET ALSO FREEZING?? ELSE IF(IFLUID.EQ.2) THEN CALL THMSGT(SNAME,SCOMP,STP,IMPX) CALL THMSST(STP,TSAT,IMPX) ENDIF IF(IFUEL.EQ.1) THEN CALL THMSGT(FNAME,FCOMP,FTP,IMPX) ENDIF IF(TINLET.GT.TSAT) THEN WRITE(HSMG,'(28HTHMTRS: OUTLET TEMPERATURE (,1P,E12.4, 1 40H K) GREATER THAN SATURATION TEMPERATURE.)') TINLET CALL XABORT(HSMG) ENDIF RHOIN0=0.0 IF(IFLUID.EQ.0) THEN CALL THMPT(POUT0,TIN0,RHOIN0,HINLE0,R3,R4,R5) ELSE IF(IFLUID.EQ.1) THEN CALL THMHPT(POUT0,TIN0,RHOIN0,HINLE0,R3,R4,R5) ELSE IF(IFLUID.EQ.2) THEN CALL THMSPT(STP,TINLET,RHOIN0,HINLE0,R3,R4,R5,IMPX) ENDIF MFLXIN0=SPDIN*RHOIN0 IF(IFLUID.EQ.0) THEN CALL THMPT(POULET,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN) ELSE IF(IFLUID.EQ.1) THEN CALL THMHPT(POULET,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN) ELSE IF(IFLUID.EQ.2) THEN CALL THMSPT(STP,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN,IMPX) ENDIF MFLXIN=SPDIN*RHOINL IF(NDTOT.GT.MAXNPO) CALL XABORT('THMTRS: MAXNPO OVERFLOW') *---- * MAIN LOOP ALONG THE 1D CHANNEL. DO K=1,NZ *---- * COMPUTE THE LINEAR POWER, THE VOLUMIC POWER, THE THERMAL EXCHANGE * COEFFICIENT OF THE GAP AND THE THERMAL HEAT FLUX ALONG THE CHANNEL *---- DV(K)=VOLXY*HZ(K) * linear power in W/m. POWLIN(K)=(POW(K)/DV(K))*VOLXY/FNFU(K) * volumic power in W/m^3. QFUEL(K)=POW(K)*FFUEL(K)/DV(K) QCOOL(K)=POW(K)*FCOOL(K)/DV(K) *---- * INITIALIZATION OF THE THERMO-HYDRAULICAL PROPERTIES OF THE FLUID *---- DCOOL(K)=DCOOL0(K) MUT(K)=MUIN VELOT(K)=VELOT0(K) MFLXT0(K)=DCOOL0(K)*VELOT(K) MFLXT(K)=MFLXT0(K) PREST(K)=PREST0(K) ENTHT(K)=ENTHT0(K) DLIQT(K)=DLIQT0(K) DO L=1,NDTOT TEMPT(L,K)=TEMPT0(L,K) ENDDO RESM(K)=MFLXT(K) RESP(K)=PREST(K) RESH(K)=ENTHT(K) ENDDO *---- * ITERATIVE PROCEDURE FOR EACH CHANNEL *---- DO K=1,NZ XFL(K)=0.0 EPS(K)=0.0 XFL(K)=0.0 MFLXT(K)=0.0 SLIP(K)=1.0 KWA(K)=0 ENDDO KMIN=1 DO K=1,NZ IF(POW(K).NE.0.0) THEN KMIN=K EXIT ENDIF ENDDO ITERC=0 20 ITERC=ITERC+1 IF(ITERC.GT.MAXITC) THEN CALL XABORT('THMTRS: CONVERGENCE FAILURE IN FLOW CALCULATION.') ENDIF *---- * MAIN LOOP ALONG THE 1D CHANNEL. *---- K0=0 ! onset of nuclear boiling point DO K=KMIN,NZ IF(POW(K).EQ.0.0) CYCLE IF(IMPX.GT.4) WRITE(6,190) K *---- * SOLVE THE CONDUCTION EQUATIONS INSIDE THE FUEL ROD *---- DO L=1,NDTOT-1 TRE10(L)=TEMPT0(L,K) TRE11(L)=TEMPT(L,K) RADD(L)=RAD(L,K) ENDDO TSCLAD=TEMPT(NDTOT,K) IF(IGAP.EQ.0) THEN CALL THMROD(IMPX,NFD,NDTOT-1,MAXIT1,MAXITL,ERMAXT,DTINV, 1 RADD,TRE10,TRE11,QFUEL(K),FRO,TSCLAD,POWLIN(K),XBURN(K), 2 POROS,FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC, 3 KCONDC,UCONDC,IHGAP,KHGAP,IFRCDI,TC1,XX2,XX3,ZF) ELSE CALL THMRNG(IMPX,NFD,NDTOT-1,MAXIT1,MAXITL,ERMAXT,DTINV, 1 RADD,TRE10,TRE11,QFUEL(K),FRO,TSCLAD,POWLIN(K),XBURN(K), 2 POROS,FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC, 3 KCONDC,UCONDC,IFRCDI,IFUEL,FTP 4 TC1,XX2,XX3,ZF) ENDIF *---- * COMPUTE THE HEAT FLUX FROM CLAD TO COOLANT IN W/m^2 *---- PHI(K)=(ZF(1)-TSCLAD*ZF(2))/RAD(NDTOT-1,K) IF(PHI(K).GT.CFLUX) THEN WRITE(HSMG,'(23HTHMTRS: THE HEAT FLUX (,1P,E12.4,5H) IS , > 37HGREATER THAN THE CRITICAL HEAT FLUX (,E12.4,2H).)') > PHI(K),CFLUX WRITE(6,'(/1X,A)') HSMG ENDIF *---- * FLOW RATE CALCULATION WITH MASS CONSERVATION EQUATION *---- PARAM1=0.5*(DCOOL0(K)-DCOOL(K))*DTINV*HZ(K) IF(K.EQ.KMIN) THEN PARAM1=PARAM1+0.5*(RHOIN0-RHOINL)*DTINV*HZ(K) MFLXT(K)=MFLXIN+PARAM1 ELSE PARAM1=PARAM1+0.5*(DCOOL0(K-1)-DCOOL(K-1))*DTINV*HZ(K) MFLXT(K)=MFLXT(K-1)+PARAM1 ENDIF *---- * ENTHALPY VECTOR CALCULATION WITH ENERGY CONSERVATION EQUATION *---- PARAM1=0.5*DCOOL(K)*DTINV*HZ(K)+MFLXT(K) PARAM2=0.5*DCOOL0(K)*ENTHT0(K)*DTINV*HZ(K) PARAM3=(QCOOL(K)+PHI(K)*PCH(K)/ACOOL(K))*HZ(K) IF(K.EQ.KMIN) THEN PARAM2=PARAM2+0.5*(RHOIN0*HINLE0-RHOINL*HINLET)*DTINV*HZ(K) PARAM2=PARAM2+MFLXIN*HINLET HMINF=HINLET ELSE PARAM2=PARAM2+0.5*(DCOOL0(K-1)*ENTHT0(K-1)- 1 DCOOL(K-1)*ENTHT(K-1))*DTINV*HZ(K) PARAM2=PARAM2+MFLXT(K-1)*ENTHT(K-1) HMINF=ENTHT(K-1) ENDIF ENTHT(K)=(PARAM2+PARAM3)/PARAM1 DELTH=ENTHT(K)-HMINF *---- * COMPUTE THE COOLANT TEMPERATURE AND THE OUTER CLADDING TEMPERATURE *---- DO I1=1,4 POINT=(1.0+XS(I1))/2.0 ENT(I1)=HMINF+POINT*DELTH ENDDO IF(K.GT.1) THEN XFL(K)=XFL(K-1) EPS(K)=EPS(K-1) SLIP(K)=SLIP(K-1) ENDIF *CGT IF ((IFLUID.EQ.0).OR.(IFLUID.EQ.1)) THEN CALL THMH2O(1,IX,IY,K,K0,PREST(K),MFLXT(K),ENTHT(K),ENT,HD(K), > IFLUID,IHCONV,KHCONV,ISUBM,RAD(NDTOT-1,K),ZF,VELOT(K), > IDFM,PHI(K),XFL(K),EPS(K),SLIP(K),ACOOL(K),PCH(K),HZ(K),TCALO, > DCOOL(K),DLIQT(K),DGCOOL(K),TRE11(NDTOT), > KWA(K),VGJprime,HLV(K)) ELSEIF (IFLUID.EQ.2) THEN CALL THMSAL(IMPX,1,IX,IY,K,K0,MFLXT(K),ENTHT(K),ENT,HD(K), > STP,IHCONV,KHCONV,ISUBM,RAD(NDTOT-1,K),ZF,PHI(K), > XFL(K), > EPS(K),SLIP(K),HZ(K),TCALO,DCOOL(K),DLIQT(K), > TRE11(NDTOT),KWA(K)) ENDIF *CGT DO L=1,NDTOT-1 TRE11(L)=XX2(L)+TRE11(NDTOT)*XX3(L) TEMPT(L,K)=TRE11(L) ENDDO TEMPT(NDTOT,K)=TRE11(NDTOT) *---- * RECOVER MESHWISE TEMPERATURES AND FLUID DENSITY. BY DEFAULT, USE THE * ROWLANDS FORMULA TO COMPUTE THE EFFECTIVE FUEL TEMPERATURE, OTHERWISE * USE USER-SPECIFIED WEIGHTING FACTOR. *---- TCOMB(K)=(1.0-WTEFF)*TC1+WTEFF*TRE11(NFD) TCOOL(K)=TCALO TCENTT(K)=TC1 TSURF(K)=TRE11(NFD) TCLAD(K)=TRE11(NDTOT) ENDDO *---- * MOMENTUM VECTOR CALCULATION WITH MOMENTUM CONSERVATION EQUATION *---- * DO K=NZ,1,-1 * IF(POW(K).EQ.0.0) CYCLE * RET=ABS(MFLXT(K))*(1.0-XFL(K))*HD/MUT(K) * PARAM1=0.5*(MFLXT(K)-MFLXT0(K))*DTINV*HZ(K) * PARAM2=MFLXT(K)**2.0/DCOOL(K) * CALL THMFRI(RET,F) * IF(XFL(K).GT.0.0) THEN * CALL THMPLO(PREST(K),XFL(K),PHIL0) * ELSE * PHIL0=1.0 * ENDIF * PARAM31=DCOOL(K)*PES * PARAM32=0.5*F*MFLXT(K)**2.0/HD/DLIQT0(K)*PHIL0 * PARAM3=(PARAM31+PARAM32)*HZ(K) * IF(K.EQ.1) THEN * PARAM1=PARAM1+0.5*(MFLXIN-MFLXIN0)*DTINV*HZ(1) * PARAM2=PARAM2-MFLXIN**2.0/RHOINL * PREST(1)=PREST(2)+PARAM1+PARAM2+PARAM3 * ELSE IF(K.LT.NZ) THEN * PARAM1=PARAM1+0.5*(MFLXT(K-1)-MFLXT0(K-1))*DTINV* * 1 HZ(K) * PARAM2=PARAM2-MFLXT(K-1)**2.0/DCOOL(K-1) * PREST(K)=PREST(K+1)+PARAM1+PARAM2+PARAM3 * ELSE IF(K.EQ.NZ) THEN * PARAM1=PARAM1+0.5*(MFLXT(NZ-1)-MFLXT0(NZ-1))*DTINV* * 1 HZ(NZ) * PARAM2=PARAM2-MFLXT(K-1)**2.0/DCOOL(K-1) * PREST(NZ)=POULET+PARAM1+PARAM2+PARAM3 * ENDIF * ENDDO PINLET=PREST(KMIN) *---- * CALCULATE THE VOID FRACTION COEFFICIENT AND THE STEAM QUALITY *---- DO K=1,NZ HZC(K)=HZ(K) PHIC(K)=PHI(K) TP(K)=TCLAD(K) TLC(K)=TCOOL(K) ENTH(K)=ENTHT(K) AGM(K)=MFLXT(K) PC(K)=PREST(K) ENDDO *---- * COMPUTE NEW VALUES OF DENSITIES AND VELOCITIES OVER CHANNEL *---- DO K=1,NZ IF(EPS(K).GT.0.0) THEN IF(IFLUID.EQ.0) THEN CALL THMSAT(PREST(K),TSAT) CALL THMTX(TSAT,1.0,RGSAT,HGSAT,R3,R4,R5) ELSE IF(IFLUID.EQ.1) THEN CALL THMHST(PREST(K),TSAT) CALL THMHTX(TSAT,1.0,RGSAT,HGSAT,R3,R4,R5) ENDIF DCOOL(K)=DLIQT(K)*(1.0-EPS(K))+EPS(K)*RGSAT ELSE DCOOL(K)=DLIQT(K) ENDIF VELOT(K)=MFLXT(K)/DCOOL(K) ENDDO *---- * CONVERGENCE TEST FOR THE ENTHALPY, PRESSURE DENSITY AND * MASS FLUX CALCULATION. *---- ERRG=0.0 ERRP=0.0 ERRH=0.0 ERR=0.0 ERX=0.0 DO K=1,NZ IF(POW(K).EQ.0.0) CYCLE IF(IFLUID.EQ.0) THEN CALL THMSAT(PREST(K),TSAT) ELSE IF(IFLUID.EQ.1) THEN CALL THMHST(PREST(K),TSAT) ENDIF TB=TSAT-0.1 IF(TCOOL(K).LT.TB) THEN IF(IFLUID.EQ.0) THEN CALL THMPT(PREST(K),TCOOL(K),R11,H11,K11,MUT(K),C11) ELSE IF(IFLUID.EQ.1) THEN CALL THMHPT(PREST(K),TCOOL(K),R11,H11,K11,MUT(K),C11) ELSE IF(IFLUID.EQ.2) THEN CALL THMSPT(STP,TCOOL(K),R11,H11,K11,MUT(K),C11,IMPX) ENDIF ELSE IF(IFLUID.EQ.0) THEN CALL THMPT(PREST(K),TB,R11,H11,K11,MUT(K),C11) ELSE IF(IFLUID.EQ.1) THEN CALL THMHPT(PREST(K),TB,R11,H11,K11,MUT(K),C11) ELSE IF(IFLUID.EQ.2) THEN CALL THMSPT(STP,TB,R11,H11,K11,MUT(K),C11,IMPX) ENDIF ENDIF ERRG=MAX(ERRG,ABS(MFLXT(K)-RESM(K))/MFLXT(K)) ERRP=MAX(ERRP,ABS(PREST(K)-RESP(K))/PREST(K)) ERRH=MAX(ERRH,ABS(ENTHT(K)-RESH(K))/ENTHT(K)) RESM(K)=MFLXT(K) RESP(K)=PREST(K) RESH(K)=ENTHT(K) ENDDO ERR=MAX(ERRG,ERRP,ERRH) IF(IMPX.GT.1) WRITE(6,200) ITERC,ERRG,ERRP,ERRH IF(IFLUID.EQ.0) THEN CALL THMPT(PINLET,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN) ELSE IF(IFLUID.EQ.1) THEN CALL THMHPT(PINLET,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN) ELSE IF(IFLUID.EQ.2) THEN CALL THMSPT(STP,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN,IMPX) ENDIF IF((ERR.LT.ERMAXC).AND.(ITERC.GT.1)) THEN GO TO 30 ELSE GO TO 20 ENDIF *---- * PRINT THE OUTLET THERMOHYDRAULICAL PARAMETERS *---- 30 IF(IMPX.GT.3) THEN WRITE(6,'(/16H THMTRS: CHANNEL,2I6/1X,27(1H-))') IX,IY WRITE(6,210) ' ___________________________________________', > '____________________________________________________', > '____________________________________________________', > '_______________________________' WRITE(6,210) '| | TFUEL | TSURF | MFLXT ', > ' | DCOOL | TCOOL | PCOOL | HCO', > 'OL | QFUEL | QCOOL | VOID | ', > 'QUAL | SLIP | FLOW |', > '| | K | K | Kg/m2/s | K', > 'g/m3 | K | Pa | J/Kg | ', > ' W/m3 | W/m3 | | ', > '| | REGIME |' WRITE(6,210) '|_____|____________|____________|___________', > '__|_____________|_____________|_____________|_______', > '______|_____________|_____________|___________|_____', > '________|_____________|________|' DO L=NZ,1,-1 IF(L.EQ.1) THEN WRITE(6,220) '| BOT |',TCOMB(L),' |',TSURF(L), > ' |',MFLXT(L),' |',DCOOL(L),' |',TCOOL(L), > ' |',PREST(L),' |',ENTHT(L),' |',QFUEL(L), > ' |',QCOOL(L),' |',EPS(L),' |',XFL(L),' |',SLIP(L), > ' |',KWA(L),' |' ELSEIF(L.EQ.NZ) THEN WRITE(6,220) '| TOP |',TCOMB(L),' |',TSURF(L), > ' |',MFLXT(L),' |',DCOOL(L),' |',TCOOL(L), > ' |',PREST(L),' |',ENTHT(L),' |',QFUEL(L), > ' |',QCOOL(L),' |',EPS(L),' |',XFL(L),' |',SLIP(L), > ' |',KWA(L),' |' ELSE WRITE(6,225) '| ',L,' |',TCOMB(L),' |',TSURF(L), > ' |',MFLXT(L),' |',DCOOL(L),' |',TCOOL(L), > ' |',PREST(L),' |',ENTHT(L),' |',QFUEL(L), > ' |',QCOOL(L),' |',EPS(L),' |',XFL(L),' |',SLIP(L), > ' |',KWA(L),' |' ENDIF ENDDO WRITE(6,210) '|_____|____________|____________|___________', > '__|_____________|_____________|_____________|_______', > '______|_____________|_____________|___________|_____', > '________|_____________|________|' ENDIF *---- * MODIFICATION OF THE VECTORS TO FIT THE GEOMETRY OF THE CHANNELS AND * THE BUNDLES AND WRITE THE DATA IN LCM OBJECT THM *---- CALL LCMPUT(MPTHM,'PRESSURE',NZ,2,PREST) CALL LCMPUT(MPTHM,'DENSITY',NZ,2,DCOOL) CALL LCMPUT(MPTHM,'ENTHALPY',NZ,2,ENTHT) CALL LCMPUT(MPTHM,'VELOCITIES',NZ,2,VELOT) CALL LCMPUT(MPTHM,'CENTER-TEMPS',NZ,2,TCENTT) CALL LCMPUT(MPTHM,'COOLANT-TEMP',NZ,2,TCOOL) CALL LCMPUT(MPTHM,'LIQUID-DENS',NZ,2,DLIQT) CALL LCMPUT(MPTHM,'PINLET',1,2,PINLET) CALL LCMPUT(MPTHM,'TINLET',1,2,TINLET) CALL LCMPUT(MPTHM,'VINLET',1,2,SPEED) CALL LCMPUT(MPTHM,'POWER',NZ,2,POW) CALL LCMPUT(MPTHM,'POULET',1,2,POULET) CALL LCMPUT(MPTHM,'TEMPERATURES',NDTOT*NZ,2,TEMPT) CALL LCMPUT(MPTHM,'RADII',(NDTOT-1)*NZ,2,RAD) *---- * SCRATCH STORAGE DEALLOCATION *---- DEALLOCATE(DLIQT,TCENTT,TEMPT,ENTHT,PREST,VELOT,DLIQT0,TEMPT0, > ENTHT0,PREST0,DCOOL0,VELOT0,RAD) RETURN * 190 FORMAT(/21H THMTRS: AXIAL SLICE=,I5) 200 FORMAT(/24H THMTRS: FLOW ITERATION=,I5,1P,8H ERROR=,3E12.4) 210 FORMAT(1X,A,A,A,A) 220 FORMAT(1X,A,F11.2,A,F11.2,A,F12.4,A,F12.4,A,F12.2,A,3P,E12.4, > A,1P,E12.4,A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A,E12.4,A, > E12.4,A,I5,2X,A) 225 FORMAT(1X,A,I3,A,F11.2,A,F11.2,A,F12.4,A,F12.4,A,F12.2,A,3P, > E12.4,A,1P,E12.4,A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A, > E12.4,A,E12.4,A,I5,2X,A) END