From 7dfcc480ba1e19bd3232349fc733caef94034292 Mon Sep 17 00:00:00 2001 From: stainer_t Date: Mon, 8 Sep 2025 13:48:49 +0200 Subject: Initial commit from Polytechnique Montreal --- Dragon/src/SYB002.f | 243 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 243 insertions(+) create mode 100644 Dragon/src/SYB002.f (limited to 'Dragon/src/SYB002.f') diff --git a/Dragon/src/SYB002.f b/Dragon/src/SYB002.f new file mode 100644 index 0000000..fd959d8 --- /dev/null +++ b/Dragon/src/SYB002.f @@ -0,0 +1,243 @@ +*DECK SYB002 + SUBROUTINE SYB002 (NGEN,NPIJ,NPIS,SIGT2,SIGW2,IMPX,NCOUR,IWIGN, + 1 IQUAD,XX,YY,NMC,RAYRE,MAIL,RZMAIL,PIJW,PISW,PSJW,PSSW) +* +*----------------------------------------------------------------------- +* +*Purpose: +* Compute the cellwise scattering-reduced collision, escape and +* transmission probabilities in a 2-D Cartesian or hexagonal assembly +* with Roth approximation. +* +*Copyright: +* Copyright (C) 2002 Ecole Polytechnique de Montreal +* This library is free software; you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation; either +* version 2.1 of the License, or (at your option) any later version +* +*Author(s): A. Hebert +* +*Parameters: input +* NGEN total number of generating cells. +* NPIJ length of cellwise scattering-reduced collision probability +* matrices. +* NPIS length of cellwise scattering-reduced escape probability +* matrices (NPIS=NMC(NGEN+1)). +* SIGT2 total macroscopic cross sections. +* SIGW2 P0 within-group scattering macroscopic cross sections. +* IMPX print flag (equal to 0 for no print). +* NCOUR number of currents surrounding the cells (=4 Cartesian +* lattice; =6 hexagonal lattice). +* IWIGN type of cylinderization. +* IQUAD quadrature parameters. +* XX X-thickness of the generating cells. +* YY Y-thickness of the generating cells. +* NMC offset of the first volume in each generating cell. +* RAYRE radius of the tubes in each generating cell. +* MAIL offset of the first tracking information in each generating +* cell. +* RZMAIL real tracking information. +* +*Parameters: output +* PIJW cellwise scattering-reduced collision probability matrices. +* PISW cellwise scattering-reduced escape probability matrices. +* PSJW cellwise scattering-reduced collision probability matrices +* for incoming neutrons. +* PSSW cellwise scattering-reduced transmission probability +* matrices. +* +*----------------------------------------------------------------------- +* +*---- +* SUBROUTINE ARGUMENTS +*---- + INTEGER NGEN,NPIJ,NPIS,IMPX,NCOUR,IWIGN,IQUAD(4),NMC(NGEN+1), + 1 MAIL(2,NGEN) + REAL SIGT2(NPIS),SIGW2(NPIS),XX(NGEN),YY(NGEN),RAYRE(NPIS), + 1 RZMAIL(*),PIJW(NPIJ),PISW(NPIS),PSJW(NPIS),PSSW(NGEN) +*---- +* LOCAL VARIABLES +*---- + PARAMETER (PI=3.141592654) + LOGICAL LSKIP + REAL, ALLOCATABLE, DIMENSION(:) :: PIS,PSJ,RAYR2,WORK + REAL, ALLOCATABLE, DIMENSION(:,:) :: PP +*---- +* SCRATCH STORAGE ALLOCATION +*---- + ALLOCATE(PIS(NPIS),PSJ(NPIS)) +* + MR=IQUAD(4) + IPIJ=0 + DO 220 JKG=1,NGEN + J1=NMC(JKG) + J2=NMC(JKG+1)-J1 +*---- +* CYLINDERIZATION OPTIONS +*---- + A=XX(JKG) + B=YY(JKG) + IB=MAIL(2,JKG) + RJ1=RAYRE(NMC(JKG+1)) + SCALE1=1.0 + SCALE2=1.0 + ROUT=0.0 + IF((NCOUR.EQ.4).AND.(IWIGN.EQ.1)) THEN +* ASKEW CYLINDERIZATION CARTESIAN. + RJ2=(A+B)/PI + SCALE1=(A*B-PI*RJ1**2)/(PI*RJ2**2-PI*RJ1**2) + ROUT=RJ2 + ELSE IF((NCOUR.EQ.4).AND.(IWIGN.EQ.2)) THEN +* WIGNER CYLINDERIZATION CARTESIAN. + ROUT=SQRT(A*B/PI) + ELSE IF((NCOUR.EQ.4).AND.(IWIGN.EQ.3)) THEN +* SANCHEZ CYLINDERIZATION CARTESIAN. + SCALE2=SQRT(PI*A*B)/(A+B) + ROUT=SQRT(A*B/PI) + ELSE IF(IWIGN.EQ.1) THEN +* ASKEW CYLINDERIZATION HEXAGONAL. + RJ2=3.0*A/PI + SCALE1=(1.5*SQRT(3.0)*A*A-PI*RJ1**2)/(PI*RJ2**2-PI*RJ1**2) + ROUT=RJ2 + ELSE IF(IWIGN.EQ.2) THEN +* WIGNER CYLINDERIZATION HEXAGONAL. + ROUT=SQRT(1.5*SQRT(3.0)/PI)*A + ELSE IF(IWIGN.EQ.3) THEN +* SANCHEZ CYLINDERIZATION HEXAGONAL. + SCALE2=SQRT(PI*SQRT(3.0)/6.0) + ROUT=SQRT(1.5*SQRT(3.0)/PI)*A + ENDIF + IF(ROUT.LE.RJ1) CALL XABORT('SYB002: CYLINDERIZATION ERROR.') +*---- +* COMPUTE THE REDUCED COLLISION PROBABILITY MATRIX +*---- + SURFA=0.5*PI*ROUT + ALLOCATE(PP(J2,J2),RAYR2(J2+1)) + DO 10 I=1,J2 + RAYR2(I)=RAYRE(J1+I) + 10 CONTINUE + RAYR2(J2+1)=ROUT + SIGT2(J1+J2)=SIGT2(J1+J2)*SCALE1 + CALL SYBALC(J2,J2,RAYR2,SIGT2(J1+1),MR,0.0,RZMAIL(IB),PP) + PSS=0.0 + RJ1=0.0 + DO 30 I=1,J2 + PIS(I)=1.0 + RJ2=RAYR2(I+1)**2 + VV=PI*(RJ2-RJ1) + DO 20 J=1,J2 + PIS(I)=PIS(I)-PP(I,J)*SIGT2(J1+J) + 20 CONTINUE + PSS=PSS+PIS(I)*SIGT2(J1+I)*VV/SURFA + RJ1=RJ2 + 30 CONTINUE + DEALLOCATE(RAYR2) + PSS=1.0-SCALE2*PSS +*---- +* COMPUTE THE REDUCED COLLISION PROBABILITY MATRIX FOR INCOMING +* NEUTRONS +*---- + SURFA=(0.5*PI*ROUT)/SCALE2 + RJ1=0.0 + DO 40 I=1,J2-1 + RJ2=PI*RAYRE(J1+I+1)**2 + PSJ(I)=PIS(I)*(RJ2-RJ1)/SURFA + RJ1=RJ2 + 40 CONTINUE + RJ2=PI*ROUT**2 + PSJ(J2)=PIS(J2)*(RJ2-RJ1)*SCALE1/SURFA + SIGT2(J1+J2)=SIGT2(J1+J2)/SCALE1 + IF(IMPX.GE.8) THEN + CALL SYBPRX(1,1,J2,JKG,SIGT2(J1+1),SIGW2(J1+1),PP(1,1),PIS(1), + 1 PSJ(1),PSS) + ENDIF +*---- +* CHECK IF SCATTERING REDUCTION IS REQUIRED +*---- + LSKIP=.TRUE. + DO 70 I=1,J2 + LSKIP=LSKIP.AND.(SIGW2(J1+I).EQ.0.0) + 70 CONTINUE +*---- +* SCATTERING REDUCTION IF LSKIP=.FALSE. +*---- + IF(LSKIP) THEN +* DO NOT PERFORM SCATTERING REDUCTION. + DO 90 I=1,J2 + DO 80 J=1,J2-1 + PIJW(IPIJ+(J-1)*J2+I)=PP(I,J) + 80 CONTINUE + PIJW(IPIJ+(J2-1)*J2+I)=PP(I,J2)*SCALE1 + 90 CONTINUE + DO 100 I=1,J2 + PISW(J1+I)=PIS(I) + PSJW(J1+I)=PSJ(I) + 100 CONTINUE + PSSW(JKG)=PSS + ELSE +* COMPUTE THE SCATTERING-REDUCED COLLISION AND ESCAPE MATRICES. + DO 120 I=1,J2 + DO 110 J=1,J2-1 + PIJW(IPIJ+(J-1)*J2+I)=-PP(I,J)*SIGW2(J1+J) + 110 CONTINUE + PIJW(IPIJ+(J2-1)*J2+I)=-PP(I,J2)*SIGW2(J1+J2)*SCALE1 + PIJW(IPIJ+(I-1)*J2+I)=1.0+PIJW(IPIJ+(I-1)*J2+I) + 120 CONTINUE + CALL ALINV(J2,PIJW(IPIJ+1),J2,IER) + IF(IER.NE.0) CALL XABORT('SYB002: SINGULAR MATRIX.') + ALLOCATE(WORK(J2)) + DO 170 I=1,J2 + DO 130 K=1,J2 + WORK(K)=PIJW(IPIJ+(K-1)*J2+I) + 130 CONTINUE + DO 150 J=1,J2-1 + WGAR=0.0 + DO 140 K=1,J2 + WGAR=WGAR+WORK(K)*PP(K,J) + 140 CONTINUE + PIJW(IPIJ+(J-1)*J2+I)=WGAR + 150 CONTINUE + WGAR=0.0 + DO 155 K=1,J2 + WGAR=WGAR+WORK(K)*PP(K,J2) + 155 CONTINUE + PIJW(IPIJ+(J2-1)*J2+I)=WGAR*SCALE1 + WGAR=0.0 + DO 160 K=1,J2 + WGAR=WGAR+WORK(K)*PIS(K) + 160 CONTINUE + PISW(J1+I)=WGAR + 170 CONTINUE + DEALLOCATE(WORK) +* +* COMPUTE THE SCATTERING-REDUCED COLLISION PROBABILITY MATRIX +* FOR INCOMING NEUTRONS. + DO 190 J=1,J2 + WGAR=PSJ(J) + DO 180 K=1,J2 + WGAR=WGAR+PSJ(K)*SIGW2(J1+K)*PIJW(IPIJ+(J-1)*J2+K) + 180 CONTINUE + PSJW(J1+J)=WGAR + 190 CONTINUE +* +* COMPUTE THE SCATTERING-REDUCED TRANSMISSION PROBABILITY MATRIX. + WGAR=PSS + DO 200 K=1,J2 + WGAR=WGAR+PSJ(K)*SIGW2(J1+K)*PISW(J1+K) + 200 CONTINUE + PSSW(JKG)=WGAR + ENDIF + DEALLOCATE(PP) + IF(IMPX.GE.10) THEN + CALL SYBPRX(2,1,J2,JKG,SIGT2(J1+1),SIGW2(J1+1),PIJW(IPIJ+1), + 1 PISW(J1+1),PSJW(J1+1),PSSW(JKG)) + ENDIF + IPIJ=IPIJ+J2*J2 + 220 CONTINUE +*---- +* SCRATCH STORAGE DEALLOCATION +*---- + DEALLOCATE(PSJ,PIS) + RETURN + END -- cgit v1.2.3