summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDmccg.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/IGE351/SectDmccg.tex')
-rw-r--r--doc/IGE351/SectDmccg.tex264
1 files changed, 264 insertions, 0 deletions
diff --git a/doc/IGE351/SectDmccg.tex b/doc/IGE351/SectDmccg.tex
new file mode 100644
index 0000000..851dc51
--- /dev/null
+++ b/doc/IGE351/SectDmccg.tex
@@ -0,0 +1,264 @@
+\subsection{The \moc{mccgt} dependent records on a \dir{tracking} directory}\label{sect:mccgtrackingdir}
+
+When the \moc{MCCGT:} module is used ($\mathsf{CDOOR}$={\tt 'MCCG'}), an additional state vector
+named {\tt MCCG-STATE} is set in \moc{EXCELT:} data structure. The components $\mathcal{M}^{t}_{i}$
+of {\tt MCCG-STATE} are:
+
+\begin{itemize}
+
+\item $\mathcal{M}^{t}_{1}$: ({\tt LCACT}) The polar quadrature type used with the method of characteristics
+\begin{displaymath}
+\mathcal{M}^{t}_{1} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{Gauss-Legendre} \\
+ 1 & \textrm{CACTUS type 1} \\
+ 2 & \textrm{CACTUS type 2} \\
+ 3 & \textrm{McDaniel} \\
+ 4 & \textrm{McDaniel with $P_1$ constraint} \\
+ 5 & \textrm{Gauss optimized.}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{2}$: ({\tt NMU}) The order of the polar quadrature.
+
+\item $\mathcal{M}^{t}_{3}$: ({\tt KRYL}) GMRES acceleration switch:
+\begin{displaymath}
+\mathcal{M}^{t}_{3} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{free inner iterations} \\
+ \ge 1 & \textrm{GMRES$(\mathcal{M}^{t}_{3})$ acceleration of inner iterations} \\
+ \le 1 & \textrm{Bi-CGSTAB acceleration of inner iterations}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{4}$: ({\tt IDIFC}) Type of solution operator:
+\begin{displaymath}
+\mathcal{M}^{t}_{4} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{transport flux solution selected} \\
+ 1 & \textrm{CDD diffusion flux solution selected (no inner iterations are performed} \\
+ & \textrm{in this case, only an ACA resolution is performed)}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{5}$: ({\tt NMAX}) The maximum number of elements in a single track.
+
+\item $\mathcal{M}^{t}_{6}$: ({\tt LMCU}) The dimension of the connection matrix {\tt MCU}.
+
+\item $\mathcal{M}^{t}_{7}$: ({\tt IACC}) ACA preconditioning switch:
+\begin{displaymath}
+\mathcal{M}^{t}_{7} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{no ACA preconditioning} \\
+ \ge 1 & \textrm{ACA preconditioning of inner/multigroup iterations}
+\end{array} \right.
+\end{displaymath}
+If the number of inner iterations is set to 1, ACA is used as a rebalancing technique for multigroup iterations and $\mathcal{M}^{t}_{7}$ is the maximum number of iterations allowed to solve the ACA system.
+
+\item $\mathcal{M}^{t}_{8}$: ({\tt ISCR}) SCR preconditioning switch:
+\begin{displaymath}
+\mathcal{M}^{t}_{8} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{no SCR preconditioning} \\
+ \ge 1 & \textrm{SCR preconditioning of inner/multigroup iterations}
+\end{array} \right.
+\end{displaymath}
+If the number of inner iterations is set to 1, SCR is used as a rebalancing technique for multigroup iterations and $\mathcal{M}^{t}_{8}$ is the maximum number of iterations allowed to solve the SCR system.
+
+\item $\mathcal{M}^{t}_{9}$: ({\tt LPS}) The dimension of the surface-to-region collision probabilities array if SCR is used.
+
+\item $\mathcal{M}^{t}_{10}$: ({\tt ILU}) The type of preconditioning for the resolution with BICGSTAB of the ACA corrective system if ACA is used:
+\begin{displaymath}
+\mathcal{M}^{t}_{10} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{no preconditioning} \\
+ 1 & \textrm{diagonal preconditioning} \\
+ \ge 2 & \textrm{ILU0 preconditioning}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{11}$: ({\tt ILEXA}) Flag to force the usage of exact exponentials for preconditioner calculation:
+\begin{displaymath}
+\mathcal{M}^{t}_{11} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{not forced} \\
+ 1 & \textrm{forced}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{12}$: ({\tt ILEXF}) Flag to force the usage of exact exponentials for flux calculation:
+\begin{displaymath}
+\mathcal{M}^{t}_{12} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{not forced} \\
+ 1 & \textrm{forced}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{13}$: ({\tt MAXI}) Maximum number of inner iterations.
+
+\item $\mathcal{M}^{t}_{14}$: ({\tt LTMT}) Flag for the usage of a tracking merging technique while building the ACA matrices in order to obtain a two-step ACA acceleration:
+\begin{displaymath}
+\mathcal{M}^{t}_{14} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{no tracking merging} \\
+ 1 & \textrm{tracking merging}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{15}$: ({\tt STIS}) Flag for the flux integration strategy by the characteristics method:
+\begin{displaymath}
+\mathcal{M}^{t}_{15} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{direct approach with asymptotical treatment} \\
+ 1 & \textrm{``Source term isolation'' approach: optimized strategy with asymptotical treatment} \\
+-1 & \textrm{"MOCC/MCI"-like approach: optimized strategy without asymptotical treatment}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{16}$: ({\tt NPJJM}) Effective number of angular mode-to-mode self-collision probabilities to be calculated per group and region if $\mathcal{M}^{t}_{15}=1$ e.g.
+\begin{center}
+\begin{tabular}{|c|c|c|}
+ anisotropy & 2D & 3D \\ \hline
+$P_0$ & 1 & 1 \\
+$P_1$ & 4 & 7 \\
+$P_2$ & 13 & 27 \\
+$P_3$ & 31 & 76 \\ \hline
+\end{tabular}
+\end{center}
+
+\item $\mathcal{M}^{t}_{17}$: ({\tt LMCU0}) Effective number of non-diagonal elements to store for the ILU0 decomposition for ACA preconditioning.
+
+\item $\mathcal{M}^{t}_{18}$: ({\tt IFORW}) Flag to set the solution type for the ACA and characteristics system:
+\begin{displaymath}
+\mathcal{M}^{t}_{18} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{direct solution} \\
+ 1 & \textrm{adjoint solution}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{M}^{t}_{19}$: ({\tt NFUNL}) Number of spherical harmonics components used to expand the flux and the sources.
+
+\item $\mathcal{M}^{t}_{20}$: ({\tt NLIN}) Number of polynomial components used to expand the flux and the sources in space.
+
+\end{itemize}
+
+The following records will also be present on the main level of a \dir{tracking}
+directory.
+
+%\rotatebox[origin=c]{90}{
+\begin{DescriptionEnregistrement}{The \moc{MCCGT:} records in
+\dir{tracking}}{8.0cm}
+\IntEnr
+ {MCCG-STATE\blank{2}}{$40$}
+ {Vector describing the various parameters associated with this data structure $\mathcal{M}^{t}_{i}$,
+ as defined in \Sect{mccgtrackingdir}.}
+\RealEnr
+ {REAL-PARAM\blank{2}}{$4$}{}
+ {Real parameters $\mathcal{R}_{i}$ for the MCCG tracking.}
+\RealEnr
+ {XMU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{2}$}{}
+ {Inverse of the polar quadrature sines.}
+\RealEnr
+ {ZMU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{2}$}{}
+ {Cosines of the polar quadrature set.}
+\RealEnr
+ {WZMU\$MCCG\blank{3}}{$\mathcal{M}^{t}_{2}$}{}
+ {Weights of the polar quadrature set.}
+\OptIntEnr
+ {PI\$MCCG\blank{5}}{$N_{\rm dim}$}{$\mathcal{S}^t_{15} > 0$}
+ {Permutation array for ACA according to $i_\textrm{old}=\Pi(i_\textrm{new})$. The dimension of this array is $$N_{\rm dim}=\cases{\mathcal{S}^t_{1}+\mathcal{S}^t_{5} &if $\mathcal{S}^t_9=0$; \cr
+ \mathcal{S}^t_1 &if $\mathcal{S}^t_9=1$. }$$}
+\OptIntEnr
+ {INVPI\$MCCG\blank{2}}{$\mathcal{S}^t_{1}+\mathcal{S}^t_{5}$}{$\mathcal{S}^t_{15} > 0$}
+ {Inverse permutation array for ACA $i_\textrm{new}=\Pi(i_\textrm{old})$}
+\IntEnr
+ {NZON\$MCCG\blank{3}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}
+ {Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface.}
+\OptIntEnr
+ {NZONA\$MCCG\blank{2}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{$\mathcal{S}^t_{15} > 0$}
+ {Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface (-7 for void boundary conditions).}
+\RealEnr
+ {V\$MCCG\blank{6}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{}
+ {Volumes and numerical surfaces.}
+\OptRealEnr
+ {VA\$MCCG\blank{5}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{$\mathcal{S}^t_{15} > 0$}{}
+ {Renumbered Volumes and numerical surfaces.}
+\OptIntEnr
+ {KM\$MCCG\blank{5}}{$N_{\rm dim}$}{$\mathcal{M}^{t}_{7}>0$}
+ {Connection matrix for ACA.}
+\OptIntEnr
+ {IM\$MCCG\blank{5}}{$N_{\rm dim}+1$}{$\mathcal{M}^{t}_{7}>0$}
+ {Connection matrix for ACA.}
+\OptIntEnr
+ {MCU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{6}$}{$\mathcal{M}^{t}_{7}>0$}
+ {Connection matrix for ACA.}
+\OptIntEnr
+ {JU\$MCCG\blank{5}}{$N_{\rm dim}$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{S}^t_{15} > 0$ \\ $\mathcal{M}^t_{3}\ge2$ \end{tabular}\right.$}
+ {Used for ILU0 decomposition in the preconditioning of ACA system.}
+\OptIntEnr
+ {IS\$MCCG\blank{5}}{$\mathcal{S}^t_{5}$}{$\mathcal{M}^t_{1}>0$}
+ {Connection matrix for surface-to-volume probability in SCR.}
+\OptIntEnr
+ {JS\$MCCG\blank{5}}{$\mathcal{M}^t_{7}$}{$\mathcal{M}^t_{1}>0$}
+ {Connection matrix for surface-to-volume probability in SCR.}
+\IntEnr
+ {ISGNR\$MCCG\blank{2}}{$8(\mathcal{S}^{t}_{6})^2$}
+ {Signs for spherical harmonics on the 8 octant angular modes.}
+\OptIntEnr
+ {KEYCUR\$MCCG\blank{1}}{$\mathcal{S}^t_5$}{$\mathcal{S}^t_{9}=1$}
+ {Index for outgoing currents at the domain boundaries.}
+\IntEnr
+ {KEYFLX\$ANIS\blank{1}}{$\mathcal{S}^t_1,\mathcal{M}^t_{20},\mathcal{M}^t_{19}$}
+ {Location in unknown vector of averaged regional flux moments.}
+\OptIntEnr
+ {KEYANI\$MCCG\blank{1}}{$(\mathcal{S}^{t}_{6})^2$}{$\mathcal{S}^t_9=1$}
+ {Index for currents.}
+\OptIntEnr
+ {PJJIND\$MCCG\blank{1}}{$2\mathcal{M}^{t}_{16}$}{$\mathcal{M}^t_{15}=1$}
+ {Index of modes connection for non vanishing angular mode-to-mode self-collision probabilities}
+
+ \OptIntEnr
+ {IM0\$MCCG\blank{4}}{$N_{\rm dim}+1$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{M}^t_{7}>0$ \\ $\mathcal{M}^t_{3}=3$ \end{tabular}\right.$}
+ {Connection matrix for non-diagonal elements of ILU0-ACA.}
+\OptIntEnr
+ {MCU0\$MCCG\blank{3}}{$\mathcal{M}^{t}_{17}$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{M}^t_{7}>0$ \\ $\mathcal{M}^t_{3}=3$ \end{tabular}\right.$}
+ {Connection matrix for non-diagonal elements of ILU0-ACA.}
+
+\end{DescriptionEnregistrement}%}
+
+\noindent
+with the real parameter $\mathcal{R}_{i}$, representing:
+\begin{itemize}
+\item $\mathcal{R}^{t}_{1}$: Convergence criterion on inner iterations.
+\item $\mathcal{R}^{t}_{2}$: Step characteristics selection criterion:
+\begin{displaymath}
+\mathcal{R}^{t}_{2} = \left\{
+\begin{array}{rl}
+ 0.0 & \textrm{step characteristics scheme} \\
+>0.0 & \textrm{diamond differencing scheme.}
+\end{array} \right.
+\end{displaymath}
+\item $\mathcal{R}^{t}_{3}$: Track spacing in cm for 3D prismatic tracking.
+\item $\mathcal{R}^{t}_{4}$: Tracking symmetry factor for maximum track length calculation during the calculation of a 3D prismatic tracking.
+\end{itemize}
+
+The following records will also be present in the \namedir{PROJECTION} directory of a \dir{tracking}
+directory when a prismatic tracking is considered.
+
+\begin{DescriptionEnregistrement}{The \moc{MCCGT:} records in
+\namedir{PROJECTION}}{8.0cm}
+\OptRealEnr
+ {ZCOORD\blank{6}}{$\mathcal{M}^{t}_{18}+1$}{$\mathcal{S}^{t}_{39} > 0$}{cm}
+ {The $z-$directed mesh position}
+\OptIntEnr
+ {IND2T3\blank{6}}{$N_{ind}$}{$\mathcal{S}^{t}_{39} > 0$}
+ {Volume and surfaces index for a 3D prismatic geometry. Its size is $N_{ind}=(N_{2D}+1)(\mathcal{M}^{t}_{18}+2)$ where $N_{2D}$ is the number of volumes and surfaces in the initial 2D tracking}
+\OptDbleEnr
+ {VNORF\blank{7}}{$N_{nor}$}{$\mathcal{S}^{t}_{39} > 0$}{}
+ {Angular dependent normalization factors for a 3D prismatic extended tracking. Its size is $N_{nor}= 2 \mathcal{S}^{t}_{1} \mathcal{M}^{t}_{2} N_{\textrm{angl}}$ where $N_{\textrm{angl}}$ is the number of tracking angles in the initial 2D tracking}
+
+\end{DescriptionEnregistrement}
+
+\eject