diff options
Diffstat (limited to 'doc/IGE351/SectDdraglib.tex')
| -rw-r--r-- | doc/IGE351/SectDdraglib.tex | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/doc/IGE351/SectDdraglib.tex b/doc/IGE351/SectDdraglib.tex new file mode 100644 index 0000000..46dabdb --- /dev/null +++ b/doc/IGE351/SectDdraglib.tex @@ -0,0 +1,205 @@ +\section{Contents of a \dir{draglib} directory}\label{sect:draglibdir} + +The {\sc draglib} format provide an efficient way to store burnup data and multigroup isotopic nuclear +data to be used in a lattice code. A {\sc draglib} file is a persistent +LCM object (an {\sc xsm}--formatted file) used to organize the +data in a hierarchical format. Therefore, it will be easy to convert back and +forth between the binary direct access format (efficient during a lattice +calculation) and the {\sc ascii} export format (usefull for backup and exchange purposes). +A library in {\sc draglib} format is generally built using the {\tt dragr} module +available in an inhouse version of NJOY.\cite{Dragr} The optional capability to define energy-dependent +fission spectra is available, as described in Ref.~\citen{mosca}. + +\vskip0.2cm + +A {\sc draglib} is an LCM object with a depletion chain and a set of isotopic +sub-directories located on the root directory. Each isotopic sub-directory +contains infinite dilution nuclear data for a set of absolute temperatures. +Incremental values corresponding to finite dilutions are given on the last +directory level. + +\vskip0.2cm + +The first group corresponds to highest energy neutrons. +Every cross section is given in barn. Finally, note that the lagging zeros of +any cross section record can be removed from that record in order to save space +on the {\sc draglib}. The lattice code will therefore have to pack any uncomplete +cross section record with zeros. + +\subsection{The main \dir{draglib} directory}\label{sect:drglibdirmain} + +On its first level, the +following records and sub-directories will be found in the \dir{draglib} directory: + +\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{draglib}}{8.0cm} +\CharEnr + {SIGNATURE\blank{3}}{$*12$} + {Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_DRAGLIB\blank{3}}).} +\CharEnr + {VERSION\blank{5}}{$*12$} + {Version identification. Equal to {\tt 'RELEASE\_2003'} for all Draglibs produced up to September + 2025. Equal to {\tt 'RELEASE\_2025'} for Draglibs with {\tt H-FACTOR} (KERMA) information. This value + will change if the {\sc draglib} specification is to be modified in the future.} +\CharEnr + {README\blank{6}}{$(N^{\rm dgl})*80$} + {User--defined comments about the library.} +\RealEnr + {ENERGY\blank{6}}{$G+1$}{eV} + {$E(g)$: Group energy limits in eV. Group $g$ is defined as $E(g) < E \le E(g-1)$.} +\OptRealEnr + {CHI-ENERGY\blank{2}}{$G_{\rm chi}+1$}{$G_{\rm chi}\ne 0$}{eV} + {$E_{\rm chi}(g)$: Group energy limits defining the energy-dependent fission spectra. By default, a unique fission spectra is used.} +\OptIntEnr + {CHI-LIMITS\blank{2}}{$G_{\rm chi}+1$}{$G_{\rm chi}\ne 0$} + {$N_{\rm chi}(g)$: Group limit indices defining the energy-dependent fission spectra. By default, a unique fission spectra is used.} +\OptDirEnr + {DEPL-CHAIN\blank{2}}{*} + {directory containing the \dir{depletion} associated with this library, following + the specification presented in \Sect{microlibdirdepletion}. (*) This data is required + if the library is to be used for burnup calculations.} +\DirVar + {\listedir{isotope}} + {Set of sub-directories containing the cross section information + associated with a specific isotope.} +\end{DescriptionEnregistrement} + +\noindent where $G$ is the number of energy groups. For design reasons, the +{\sc draglib} object has no state vector record. + +\subsection{Contents of an \dir{isotope} directory}\label{sect:isotopeDrag} + +Each \dir{isotope} directory contains information related to a single isotope. +This information is written using one of the following formats: +\begin{itemize} +\item a temperature--independent isotopic data is written using the format described +in Tables~\ref{tabl:tabiso1} to \ref{tabl:tabiso5} of the {\sc microlib} +specification. Such isotopic data is typically produced by the {\tt EDI:} module. +\item a temperature--dependent isotopic data, tabulated for $N_{\rm tmp}$ temperatures, is +written using the format presented in Table~\ref{tabl:tabiso201}. +\end{itemize} + +\begin{DescriptionEnregistrement}{Temperature-dependent isotopic records}{7.5cm} +\label{tabl:tabiso201} +\CharEnr + {README\blank{6}}{$(N^{\rm iso})*80$} + {User--defined comments about the isotope.} +\RealEnr + {AWR\blank{9}}{$1$}{nau} + {Ratio of the isotope mass divided by the neutron mass} +\RealEnr + {TEMPERATURE\blank{1}}{$N_{\rm tmp}$}{K} + {Set of temperatures, expressed in Kelvin.} +\DirVar + {\listedir{tmpdir}} + {Set of $N_{\rm tmp}$ sub-directories, each containing the cross section information + associated with a specific temperature.} +\OptRealEnr + {BIN-DELI\blank{4}}{$1$}{*}{1} + {Elementary lethargy width of the Autolib lethargy mesh.} +\OptIntEnr + {BIN-NFS\blank{5}}{$G$}{*} + {Number of fine energy groups $n_{{\rm bin},g}$ in each group $g$. May be set to zero + in some groups. (*) This data is optional and is useful when advanced self-shielding + models are used in the lattice calculation.} +\OptRealEnr + {BIN-ENERGY\blank{2}}{$N_{\rm bin}+1$}{*}{eV} + {Fine group energy limits in eV. Here, $N_{\rm bin}=\sum_g n_{{\rm bin},g}$. (*) This data + should be given if and only if the record {\tt `BIN-NFS'} is present.} +\OptIntEnr + {ONFLIGHTIGR\blank{1}}{1}{*} + {Number of groups with a lethargy width equal to $\Delta u^{\rm ecco}$. (*) This data is optional and is used to compress scattering information + in eccolib libraries.} +\OptRealEnr + {ONFLIGHTDEL\blank{1}}{1}{*}{1} + {Lethargy width $\Delta u^{\rm ecco}$ of groups above thermal energies. (*) This data is optional and is used to compress scattering information + in eccolib libraries.} +\end{DescriptionEnregistrement} + +The name of each \listedir{tmpdir} directory is a {\tt character*12} variable ({\tt text12}) +composed using the following Fortran instruction: +$$ +\mathtt{WRITE(}\mathsf{text12}\mathtt{,'(''SUBTMP'',I4.4)')}\: J +$$ +where $J$ is the index of the temperature with $1 \leq J \le N_{\rm tmp}$. + +\vskip 0.2cm + +Scattering information is lumped for some isotopes of an eccolib library. If records {\tt ONFLIGHTIGR} and +{\tt ONFLIGHTDEL} are present for an isotope, elastic scattering is assumed above thermal energies and +scattering probabilities are computed on-flight in Dragon. This option is only available with eccolib-1962g +libraries where the lethargy width is constant and equal to 1/120 above thermal energies. + +\vskip 0.2cm + +Each \dir{tmpdir} directory contains information related to a single isotope +at a single temperature. This information is written using one of the following formats: +\begin{itemize} +\item If the isotope contains no self-shielding data (i.e., if the isotope is +only present at infinite dilution), then the isotopic data is written using the format described +in Tables~\ref{tabl:tabiso1} to \ref{tabl:tabiso5} of the {\sc microlib} +specification. +\item If the isotope contains self-shielding data, then the infinite-dilution isotopic data is +written using the format described in Tables~\ref{tabl:tabiso1} to \ref{tabl:tabiso5} of the +{\sc microlib} specification. In this case, additional data is required to represent the +dilution dependence of the cross sections. This additional data is presented in Table~\ref{tabl:tabiso202}. +\end{itemize} + +\begin{DescriptionEnregistrement}{Temperature-dependent isotopic records}{7.5cm} +\label{tabl:tabiso202} +\RealEnr + {DILUTION\blank{4}}{$N_{\rm dil}$}{b} + {Set of finite dilutions $\sigma_e$, expressed in barn. Note: the infinite dilution value (1.0E10) is not given.} +\DirVar + {\listedir{dildir}} + {Set of $N_{\rm dil}$ sub-directories, each containing the {\sl incremental} cross section information + associated with a specific dilution.} +\OptRealEnr + {BIN-NTOT0\blank{3}}{$N_{\rm bin}$}{*}{b} + {Microscopic total cross sections $\sigma^{\rm BIN}(h)$ defined in the fine groups. (*) This data should be given if and + only if the records {\tt `BIN-NFS'} and {\tt `BIN-ENERGY'} are present in the parent directory.} +\OptRealEnr + {BIN-SIGS00\blank{2}}{$N_{\rm bin}$}{*}{b} + {Microscopic diffusion cross sections $\sigma^{\rm BIN}_{\rm scat0}(h)$ for an isotropic collision in the laboratory system defined + in the fine groups. (*) This data should be given if and only if the records {\tt `BIN-NFS'} + and {\tt `BIN-ENERGY'} are present in the parent directory.} +\end{DescriptionEnregistrement} + +The name of each \listedir{dildir} directory is a {\tt character*12} variable ({\tt text12}) +composed using the following Fortran instruction: +$$ +\mathtt{WRITE(}\mathsf{text12}\mathtt{,'(''SUBMAT'',I4.4)')}\: K +$$ +where $K$ is the index of the finite dilution with $1 \leq K \le N_{\rm dil}$. + +\vskip 0.2cm + +The fine-group cross sections in records {\tt BIN-NTOT0\blank{3}} and {\tt BIN-SIGS00\blank{2}} +are normalized to the coarse group values $\sigma(g)$ and $\sigma_{\rm scat0}(g)$ in such a way that + +$$\sigma(g)={1 \over {\rm ln}[E(g-1) / E(g)]} \sum_{h=h_{\rm min}+1}^{h_{\rm min}+N^{\rm BIN}(g)} {\sigma^{\rm BIN}(h)} \ {\rm ln} \biggl[{E^{\rm BIN}(h-1)\over E^{\rm BIN}(h)} \biggr]$$ + +\noindent and + +$$\sigma_{\rm scat0}(g)={1 \over {\rm ln}[E(g-1) / E(g)]} \sum_{h=h_{\rm min}+1}^{h_{\rm min}+N^{\rm BIN}(g)} {\sigma^{\rm BIN}_{\rm scat0}(h)} \ {\rm ln} \biggl[{E^{\rm BIN}(h-1)\over E^{\rm BIN}(h)} \biggr]$$ + +\noindent where + +$$h_{\rm min}=\sum_{i=1}^{g-1}{N^{\rm BIN}(i)} \ \ .$$ + +\vskip 0.2cm + +Nuclear data stored on sub-directory \dir{tmpdir} is infinite dilution data related to a single isotope +at a single temperature. Nuclear +data stored on \dir{dildir} and corresponding to dilution $\sigma_e$ is incremental +data relative to infinite dilution data: + +$$\delta\sigma_{\rm x}(g,\sigma_e)=I_{\rm x}(g,\sigma_e)-\sigma_{\rm x}(g,\infty)=\sigma_{\rm x}(g,\sigma_e)\varphi(g,\sigma_e)-\sigma_{\rm x}(g,\infty)$$ + +\noindent and + +$$\delta\varphi(g,\sigma_e)=\varphi(g,\sigma_e)-1$$ + +\noindent where $I_{\rm x}(g,\sigma_e)$ is the effective resonance integral and $\varphi(g,\sigma_e)$ is the averaged fine +structure function at dilution $\sigma_e$. Note that $\varphi(g,\infty)=1$. + +\eject |
