diff options
Diffstat (limited to 'doc/IGE351/SectDcpo.tex')
| -rw-r--r-- | doc/IGE351/SectDcpo.tex | 1 |
1 files changed, 1 insertions, 0 deletions
diff --git a/doc/IGE351/SectDcpo.tex b/doc/IGE351/SectDcpo.tex new file mode 100644 index 0000000..355b941 --- /dev/null +++ b/doc/IGE351/SectDcpo.tex @@ -0,0 +1 @@ +\section{Contents of a \dir{CPO} directory}\label{sect:cpodir}
This directory contains a burnup dependent hierarchical reactor database. For the purpose of illustration we
will assume that the \moc{CPO:} module is executed using the following data:
\begin{quote}
\begin{verbatim}
CpoResults := CPO: EdiResults EvoResults ::
BURNUP REF-CASE
EXTRACT ALL
NAME MIXTH ;
\end{verbatim}
\end{quote}
where \moc{EdiResults} is a \dds{edition} data structure that contains 2 homogeneous mixtures,
evaluated and saved at 2 time steps, \moc{EvoResults} is a \dds{burnup} data structure containing information
for the successive burnup calculations used to generate \moc{EdiResults} and finally \moc{CpoResults} is the
final \dds{cpo} data structure that contains the resulting reactor database.
\subsection{The main directory}\label{sect:cpodirmain}
The following records and sub-directories will be found in the \dir{CPO} directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{CPO}}{8.0cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{parameter $\mathsf{SIGNA}$ containing the signature of the data structure}
\IntEnr
{STATE-VECTOR}{$40$}
{array $\mathcal{S}^{c}_{i}$ containing various parameters that are required to describe this data
structure}
\DirVar
{\listedir{MIXDIR}}
{list of sub-directories that contain homogeneous mixture information}
\end{DescriptionEnregistrement}
The signature for this data structure is $\mathsf{SIGNA}$=\verb*|L_COMPO |. The array
$\mathcal{S}^{c}_{i}$ contains the following information:
\begin{itemize}
\item $\mathcal{S}^{c}_{1}=N_{H}$ contains the total number of homogeneous mixtures saved.
\item $\mathcal{S}^{c}_{2}=M_{G}$ contains the maximum number of groups considered.
\item $\mathcal{S}^{c}_{3}=M_{I}$ contains the maximum number of isotopes.
\item $\mathcal{S}^{c}_{4}=M_{L}$ contains the maximum order for the scattering anisotropy.
\item $\mathcal{S}^{c}_{5}=M_{B}$ contains the maximum number of burnup steps per mixtures.
\end{itemize}
The list of directory \listedir{MIXDIR} named $\mathsf{MIXDIR}$ will be composed according to the following
laws. The first eight character ($\mathsf{MIXDIR}$\verb*|(1:8)|) will be identical to the first 8 character
of the user data following the keyword \moc{NAME} in the \moc{CPO:} module (here \verb*|MIXTH |. If the
keyword \moc{NAME} is not used then $\mathsf{MIXDIR}$\verb*|(1:8)| takes the value \verb*|COMPO |. The last
four characters ($\mathsf{MIXDIR}$\verb*|(9:12)|) represent the various homogeneous mixture number saved on
the \dds{edition} data structure. For the case where $N_{H}$ such mixtures were produces the following
FORTRAN instructions are used to create the last four character of each of the directory names:
\begin{quote}
\verb|WRITE(|$\mathsf{MIXDIR}$\verb|(9:12),'(I4)') | $J$
\end{quote}
for $1\leq J \leq N_{H}$. For the example given above ($N_{H}=2$), two such directories will be
generated, namely
\begin{DescriptionEnregistrement}{Example of homogeneous mixture directories}{8.0cm}
\DirEnr
{MIXTH\blank{6}1}{is the sub-directory that contains the information associated with
homogeneous mixture 1}
\DirEnr
{MIXTH\blank{6}2}{is the sub-directory that contains the information associated with
homogeneous mixture 2}
\end{DescriptionEnregistrement}
\subsection{The mixture sub-directory}\label{sect:cpodirmixture}
Each mixture directory contains the following records and sub-directories will be found:
\begin{DescriptionEnregistrement}{Contents of a mixture sub-directory in \dir{CPO}}{7.0cm}
\CharEnr
{TITLE\blank{7}}{$*72$}
{parameter $\mathsf{T}$ containing the title of the run which produced this mixture}
\IntEnr
{PARAM\blank{7}}{$4$}
{array $\mathcal{P}^{\text{cpo}}_{i}$ containing the various parameters associated with this mixture}
\RealEnr
{VOLUME\blank{6}}{$1$}{cm$^{3}$}
{parameter $V_{i}$ containing the volume of the region associated this homogeneous mixture in
the \dds{edition} data structure}
\RealEnr
{ENERGY\blank{6}}{$G+1$}{eV}
{array $E_{g}$ containing the energy groups limits}
\RealEnr
{BURNUP\blank{6}}{$\mathcal{P}^{\text{cpo}}_{4}$}{MW d T$^{-1}$}
{array $B_{k}$ containing the burnup steps}
\RealEnr
{N/KB\blank{8}}{$\mathcal{P}^{\text{cpo}}_{4}$}{Kb$^{-1}$}
{array $w_{k}$ containing the fuel irradiation for the different burnup steps}
\CharEnr
{ISOTOPESNAME}{$(\mathcal{P}^{\text{cpo}}_{2})*12$}
{array $\mathsf{ISO}_{i}$ containing the name of the various isotopes saved for this mixture}
\DirVar
{\listedir{BRNDIR}}
{list of sub-directories that contain the burnup dependent cross sections associated
with this homogeneous mixture}
\end{DescriptionEnregistrement}
The following information is stored in $\mathcal{P}^{\text{cpo}}$:
\begin{itemize}
\item $\mathcal{P}^{\text{cpo}}_{1}=G$ contains the number of groups for this homogeneous mixture.
\item $\mathcal{P}^{\text{cpo}}_{2}=N_{I}$ contains the number of isotopes in this mixture.
\item $\mathcal{P}^{\text{cpo}}_{3}=N_{L}$ contains the order of the scattering anisotropy for this mixture.
\item $\mathcal{P}^{\text{cpo}}_{4}=N_{B}$ contains the number of burnup steps for this mixture.
\end{itemize}
The list of directory \listedir{BRNDIR} names $\mathsf{BRNDIR}$ will be composed according to the following
FORTRAN instructions:
\begin{quote}
\verb|WRITE(|$\mathsf{BRNDIR}$\verb|,'(A8,I4)') 'BURN ',| $J$
\end{quote}
for $1\leq J \leq N_{B}$. For the example given above ($N_{B}=2$), two such directories will be
generated, namely
\begin{DescriptionEnregistrement}{Example of homogeneous mixture directories}{8.0cm}
\DirEnr
{BURN\blank{7}1}{is the sub-directory that contains the information associated with
burnup step 1}
\DirEnr
{BURN\blank{7}2}{is the sub-directory associated with burnup step 2}
\end{DescriptionEnregistrement}
\subsection{The burnup sub-directory}\label{sect:cpodirburnup}
A burnup sub-directory contains the following records and sub-directories:
\begin{DescriptionEnregistrement}{Contents of a burnup sub-directory in \dir{CPO}}{7.0cm}
\RealEnr
{ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$}
{array $\rho_{i}$ containing the density of each isotopes}
\RealEnr
{ISOTOPES-EFJ}{$N_{I}$}{J}
{array $H_{i}$ containing the energy produced per fission for each isotope}
\RealEnr
{FLUX-INTG\blank{3}}{$G$}{cm s$^{-1}$}
{array $\Phi_{m}^{g}$ containing the integrated flux}
\RealEnr
{OVERV\blank{7}}{$G$}{cm$^{-1}$s}
{array $1/v_{m}^{g}$ containing the inverse of the average neutron velocity}
\RealEnr
{FLUXDISAFACT}{$G$}{}
{array $F_{g}$ containing the ratio of the flux in the fuel to the flux in the cell}
\DirVar
{\listedir{ISOTOPE}}
{list of $N_{I}$ sub-directories that contain the isotopic microscopic cross section
for this burnup step}
\end{DescriptionEnregistrement}
The list of directory names is specified by $\mathsf{ISODIR}=\mathsf{ISO}_{i}$ for $i=1$ to
$N_{I}$. The first isotope $\mathsf{ISODIR}$ is named \verb*|MACR | and represents an equivalent
macroscopic isotope with a density of $1.0$ (cm b)$^{-1}$. The content of the isotopic multigroup cross
section directory is described in \Sect{isotopedir}.
\ No newline at end of file |
