diff options
Diffstat (limited to 'doc/IGE351/SectDburnup.tex')
| -rw-r--r-- | doc/IGE351/SectDburnup.tex | 258 |
1 files changed, 258 insertions, 0 deletions
diff --git a/doc/IGE351/SectDburnup.tex b/doc/IGE351/SectDburnup.tex new file mode 100644 index 0000000..07cb0d4 --- /dev/null +++ b/doc/IGE351/SectDburnup.tex @@ -0,0 +1,258 @@ +\section{Contents of a +\dir{burnup} directory}\label{sect:burnupdir} + +This directory contains the main burnup information, namely the multigroup flux and the +isotopic concentration at each time or burnup step. + +\subsection{State vector content for the \dir{burnup} data structure}\label{sect:burnupstate} + +The dimensioning parameters for the \dir{burnup} data structure, which are stored in +the state vector $\mathcal{S}^{b}$, represent: + +\begin{itemize} +\item The type of solution considered $I_{s}=\mathcal{S}^{b}_{1}$ where +\vskip -0.8cm +\begin{displaymath} +I_{s} = \left\{ +\begin{array}{rl} + 1 & \textrm{Fifth-order Cash-Karp method}\\ + 2 & \textrm{Forth-order Kaps-Rentrop method} +\end{array} \right. +\end{displaymath} + +\item The type of burnup considered $I_{t}=\mathcal{S}^{b}_{2}$ where +\vskip -0.8cm +\begin{displaymath} +I_{t} = \left\{ +\begin{array}{rl} + 0 & \textrm{Out of core or zero flux/power depletion} \\ + 1 & \textrm{Constant flux depletion} \\ + 2 & \textrm{Constant fuel power depletion} \\ + 3 & \textrm{Constant assembly power depletion} +\end{array} \right. +\end{displaymath} + +\item Number of time steps for which burnup properties are present in this directory +$N_{t}=\mathcal{S}^{b}_{3}$ + +\item Total number of isotopes $N_{I}=\mathcal{S}^{b}_{4}$ + +\item Number of depleting mixtures $N^{\rm depl}_{M}=\mathcal{S}^{b}_{5}$ + +\item Number of depleting reactions $N^{\rm depl}_{R}=\mathcal{S}^{b}_{6}$ + +\item Number of depleting isotopes $N^{\rm depl}_{I}=\mathcal{S}^{b}_{7}$ + +\item Number of mixtures $N_m=\mathcal{S}^{b}_{8}$ + +\item Microscopic reaction rate extrapolation option in solving the burnup equations +$I_{e}=\mathcal{S}^{b}_{9}$ where +\vskip -0.8cm +\begin{displaymath} +I_{e} = \left\{ +\begin{array}{rl} + 0 & \textrm{Do not extrapolate} \\ + 1 & \textrm{Perform linear extrapolation} \\ + 2 & \textrm{Perform parabolic extrapolation} \\ +\end{array} \right. +\end{displaymath} + +\item Constant power normalization option for the burnup calculation +$I_{g}=\mathcal{S}^{b}_{10}$ where +\vskip -0.8cm +\begin{displaymath} +I_{g} = \left\{ +\begin{array}{rl} + 0 & \textrm{Compute the burnup using the power released in fuel} \\ + 1 & \textrm{Compute the burnup using the power released in the global geometry} \\ +\end{array} \right. +\end{displaymath} +This option have an effect only in cases +where some non-depleting mixtures are producing energy. + +\item Saturation of initial number densities $I_{s}=\mathcal{S}^{b}_{11}$ where +\vskip -0.8cm +\begin{displaymath} +I_{s} = \left\{ +\begin{array}{rl} + 0 & \textrm{Do not store saturated initial number densities in the {\sc burnup} + object} \\ + 1 & \textrm{Store saturated initial number densities} \\ +\end{array} \right. +\end{displaymath} +This option have an effect only in cases where some depleting isotopes are +at saturation. + +\item Type of saturation model $I_{d}=\mathcal{S}^{b}_{12}$ where +\vskip -0.8cm +\begin{displaymath} +I_{d} = \left\{ +\begin{array}{rl} + 0 & \textrm{Do not use Dirac functions in saturated number densities} \\ + 1 & \textrm{Use Dirac functions in saturated number densities} \\ +\end{array} \right. +\end{displaymath} +This option have an effect only in cases where some depleting isotopes are +at saturation. + +\item Perturbation flag for cross sections $I_{p}=\mathcal{S}^{b}_{13}$ where +\vskip -0.8cm +\begin{displaymath} +I_{p} = \left\{ +\begin{array}{rl} + 0 & \textrm{Time-dependent cross sections will be used if available} \\ + 1 & \textrm{Time-independent cross sections will be used} \\ +\end{array} \right. +\end{displaymath} + +\item Neutron flux recovery flag $I_{f}=\mathcal{S}^{b}_{14}$ where +\vskip -0.8cm +\begin{displaymath} +I_{f} = \left\{ +\begin{array}{rl} + 0 & \textrm{Neutron flux is recovered from a L\_FLUX object} \\ + 1 & \textrm{Neutron flux is recovered from the embedded macrolib present in a} \\ + & \textrm{L\_LIBRARY object} \\ +\end{array} \right. +\end{displaymath} + +\item Fission yield data recovery flag $I_{y}=\mathcal{S}^{b}_{15}$ where +\vskip -0.8cm +\begin{displaymath} +I_{y} = \left\{ +\begin{array}{rl} + 0 & \textrm{Fission yield data is recovered from {\tt DEPL-CHAIN} directory (see \Sect{microlibdirdepletion})} \\ + 1 & \textrm{Fission yield data is recovered from {\tt PIFI} and {\tt PYIELD} records in /isotope/} \\ + & \textrm{directory (see Table~\ref{tabl:tabiso3})} \\ +\end{array} \right. +\end{displaymath} +\end{itemize} + +\subsection{The main \dir{burnup} directory}\label{sect:burnupdirmain} + +On its first level, the +following records and sub-directories will be found in the \dir{burnup} directory: + +\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{burnup}}{8.0cm} +\CharEnr + {SIGNATURE\blank{3}}{$*12$} + {Signature of the \dir{burnup} data structure ($\mathsf{SIGNA}=${\tt L\_BURNUP\blank{4}}).} +\IntEnr + {STATE-VECTOR}{$40$} + {Vector describing the various parameters associated with this data structure + $\mathcal{S}^{b}_{i}$, as defined in \Sect{burnupstate}.} +\RealEnr + {EVOLUTION-R\blank{1}}{$5$}{} + {Vector describing the various parameters associated with the burnup calculation options +$R_{i}$} +\CharEnr + {LINK.LIB\blank{4}}{$*12$} + {Name of the {\sc microlib} on which the last depletion step was based.} +\RealEnr + {DEPL-TIMES\blank{2}}{$N_{t}$}{$10^{8}$ s} + {Vector describing the various time steps at which burnup information has been saved +$T_{i}$} +\RealEnr + {FUELDEN-INIT}{$3$}{} + {Vector giving the initial density of heavy element in the fuel $\rho_{f}$ (g + cm$^{-3}$), the initial mass of heavy element in the fuel $m_{f}$ (g) and the + initial mass of heavy element in the fuel divided by the global geometry + volume (g cm$^{-3}$)} +\RealEnr + {VOLUME-MIX\blank{2}}{$N_m$}{cm$^3$} + {Vector giving the mixture volumes} +\RealEnr + {FUELDEN-MIX\blank{1}}{$N_m$}{g} + {Initial mass of heavy element contained in each mixture} +\RealEnr + {WEIGHT-MIX\blank{2}}{$N_m$}{g} + {Initial mass of all the isotopes contained in each mixture} +\IntEnr + {DEPLETE-MIX\blank{1}}{$N_m \times N^{\rm depl}_{I}$} + {Matrix giving the index in the {\tt ISOTOPESDENS} record of each depleting + isotope in each mixture.} +\CharEnr + {ISOTOPESUSED}{$(N_{I})*12$} + {Alias name of the isotopes} +\IntEnr + {ISOTOPESMIX\blank{1}}{$N_{I}$} + {Mixture number associated with each isotope} +\IntEnr + {MIXTURESBurn}{$N_m$} + {Depletion flag array. A component is set to 1 to indicate that a mixture is depleting.} +\IntEnr + {MIXTURESPowr}{$N_m$} + {Power flag array. A component is set to 1 to indicate that a mixture is producing power.} +\DirVar + {\listedir{depldir}} + {Set of $N_{t}$ sub-directories containing the properties associated with each + burnup step $T_{i}$} +\end{DescriptionEnregistrement} + +The set of directory \listedir{depldir} names $\mathsf{DEPLDIR}$ will be composed according to the +following laws. The first eight character ($\mathsf{DEPLDIR}$\verb*|(1:8)|) will always be given by +\verb*|DEPL-DAT|. The last four characters +($\mathsf{DEPLDIR}$\verb*|(9:12)|) represent the time step saved. For the case where +$N_{t}$ time steps were saved we would use the following FORTRAN instructions to create +the last four characters of each of the directory names: +$$ +\mathtt{WRITE(}\mathsf{DEPLDIR}\mathtt{(9:12),'(I4.4)')}\: J +$$ +for $1\leq J \leq N_{t}$ with the time stamp associated with each directory being given by +$T_{J}$. For the case where ($N_{t}=2$), two such directory would be generated, namely + +\begin{DescriptionEnregistrement}{Example of depletion directories}{8.0cm} +\DirEnr + {DEPL-DAT0001}{Sub-directories which contain the information associated with + time step 1} +\DirEnr + {DEPL-DAT0002}{Sub-directories which contain the information associated with + time step 2} +\end{DescriptionEnregistrement} + +\clearpage + +\subsection{The depletion sub-directory \dir{depldir} in +\dir{burnup}}\label{sect:burnupdirdepletion} + +Inside each depletion directory the following records and sub-directories will be found: + +\begin{DescriptionEnregistrement}{Contents of a depletion sub-directory in \dir{burnup}}{7.0cm} +\RealEnr + {ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$} + {Isotopic densities $\rho_{i}$ for each of the isotopes described in the \dir{microlib} directory + where the order of the isotopes is also specified} +\RealEnr + {MICRO-RATES\blank{1}}{$N^{\rm dim}$}{$10^{-8}$ s$^{-1}\ $} + {Values of the microscopic reaction rate of the depleting reactions for each + depleting isotope and each mixture. The macroscopic reaction rate related to the + non-depleting isotopes is stored at location $N^{\rm depl}_{I}+1$. The + $N^{\rm depl}_{R}$ reaction types are stored in the order of the {\tt + 'DEPLETE-IDEN'} array in Table~\ref{tabl:tabchain}, starting with the {\tt 'NFTOT'} + reaction. The flux-induced power factors are stored in location $N^{\rm depl}_{R}$. + The decay power (delayed) factors are stored in location $N^{\rm depl}_{R}+1$ Both + flux-induced and decay power are given in units of $10^{-8}$ MeV/s. + $N^{\rm dim}=(N^{\rm depl}_{I}+1) + \times (N^{\rm depl}_{R}+1) \times N_m$} +\RealEnr + {INT-FLUX\blank{4}}{$N_m$}{cm s$^{-1}$} + {Integrated flux in each mixture.} +\RealEnr + {FLUX-NORM\blank{3}}{$1$}{$1$} + {Flux normalization constant. It is zero for out of core depletion and + represents the + normalization of the flux $\phi_{r}^{g}$ that is used to ensure that the cell integrated flux or + power is that required when fixed flux or power burnup is requested} +\RealEnr + {ENERG-MIX\blank{3}}{$N_m$}{$10^{-8}$ J} + {Energy realeased during the time step in each mixture} +\OptRealEnr + {FORM-POWER\blank{2}}{1}{$I_{t}=3$}{1} + {Ratio of the global power released in the complete geometry divided by the + power released in fuel.} +\RealEnr + {BURNUP-IRRAD}{$2$}{} + {Fuel burnup (MW d T$^{-1}$) and irradiation (Kb$^{-1}$) reached at this time step} +\end{DescriptionEnregistrement} + +\eject |
