summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDbivac.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/IGE351/SectDbivac.tex')
-rw-r--r--doc/IGE351/SectDbivac.tex220
1 files changed, 220 insertions, 0 deletions
diff --git a/doc/IGE351/SectDbivac.tex b/doc/IGE351/SectDbivac.tex
new file mode 100644
index 0000000..accb705
--- /dev/null
+++ b/doc/IGE351/SectDbivac.tex
@@ -0,0 +1,220 @@
+\subsection{The \moc{bivact} dependent records on a
+\dir{tracking} directory}\label{sect:bivactrackingdir}
+
+When the \moc{BIVACT:} operator is used ($\mathsf{CDOOR}$={\tt 'BIVAC'}), the following elements in the vector
+$\mathcal{S}^{t}_{i}$ will also be defined.
+
+\begin{itemize}
+\item $\mathcal{S}^{t}_{6}$: ({\tt ITYPE}) Type of BIVAC geometry:
+\begin{displaymath}
+\mathcal{S}^{t}_{6} = \left\{
+\begin{array}{rl}
+ 2 & \textrm{Cartesian 1-D geometry} \\
+ 3 & \textrm{Tube 1-D geometry} \\
+ 4 & \textrm{Spherical 1-D geometry} \\
+ 5 & \textrm{Cartesian 2-D geometry} \\
+ 6 & \textrm{Tube 2-D geometry} \\
+ 8 & \textrm{Hexagonal 2-D geometry}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{S}^{t}_{7}$: ({\tt IHEX}) Type of hexagonal symmetry if $\mathcal{S}^{t}_{6}= 8$:
+\begin{displaymath}
+\mathcal{S}^{t}_{7} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{non-hexagonal geometry} \\
+ 1 & \textrm{S30} \\
+ 2 & \textrm{SA60} \\
+ 3 & \textrm{SB60} \\
+ 4 & \textrm{S90} \\
+ 5 & \textrm{R120} \\
+ 6 & \textrm{R180} \\
+ 7 & \textrm{SA180} \\
+ 8 & \textrm{SB180} \\
+ 9 & \textrm{COMPLETE}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{S}^{t}_{8}$: ({\tt IELEM}) Type of finite elements:
+\begin{displaymath}
+\mathcal{S}^{t}_{8} = \left\{
+\begin{array}{rl}
+ <0 & \textrm{Order $-\mathcal{S}^{t}_{8}$ primal finite elements} \\
+ >0 & \textrm{Order $\mathcal{S}^{t}_{8}$ dual finite elements. The Thomas-Raviart or Thomas-Raviart-Schneider} \\
+ & \textrm{method is used except if $\mathcal{S}^{t}_{9}=4$ in which case a mesh-centered finite difference} \\
+ & \textrm{approximation is used}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{S}^{t}_{9}$: ({\tt ICOL}) Type of quadrature used to integrate
+the mass matrix:
+\begin{displaymath}
+\mathcal{S}^{t}_{9} = \left\{
+\begin{array}{rl}
+ 1 & \textrm{Analytical integration} \\
+ 2 & \textrm{Gauss-Lobatto quadrature (finite difference/collocation method)} \\
+ 3 & \textrm{Gauss-Legendre quadrature (superconvergent approximation)} \\
+ 4 & \textrm{mesh-centered finite difference approximation in hexagonal geometry}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{S}^{t}_{10}$: ({\tt ISPLH}) Type of hexagonal mesh splitting:
+\begin{displaymath}
+\mathcal{S}^{t}_{10} = \left\{
+\begin{array}{rl}
+ 1 & \textrm{No mesh splitting}; \emph{or} \\
+ & \textrm{$3$ lozenges per hexagon with Thomas-Raviart-Schneider approximation} \\
+ K & \textrm{$6\times(K-1)\times(K-1)$ triangles per hexagon with finite-difference approximations} \\
+ & \textrm{$3\times K \times K$ lozenges per hexagon with Thomas-Raviart-Schneider approximation}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{S}^{t}_{11}$: ({\tt LL4}) Order of the group-wise matrices.
+Generally equal to
+$\mathcal{S}^{t}_{2}$ except in cases where averaged fluxes are appended to the
+unknown vector. $\mathcal{S}^{t}_{11}\le\mathcal{S}^{t}_{2}$.
+
+\item $\mathcal{S}^{t}_{12}$: ({\tt LX}) Number of elements along the $X$ axis in Cartesian geometry or number of
+hexagons.
+
+\item $\mathcal{S}^{t}_{13}$: ({\tt LY}) Number of elements along the $Y$ axis.
+
+\item $\mathcal{S}^{t}_{14}$: ({\tt NLF}) Number of components in the angular expansion of the flux. Must be a positive
+even number. Set to zero for diffusion theory. Set to 2 for $P_1$ method.
+
+\item $\mathcal{S}^{t}_{15}$: ({\tt ISPN}) Type of transport approximation if {\tt NLF}$\ne 0$:
+\begin{displaymath}
+\mathcal{S}^{t}_{15} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{Complete $P_n$ approximation of order {\tt NLF}$-1$} \\
+ 1 & \textrm{Simplified $P_n$ approximation of order {\tt NLF}$-1$}
+\end{array} \right.
+\end{displaymath}
+
+\item $\mathcal{S}^{t}_{16}$: ({\tt ISCAT}) Number of terms in the scattering sources if {\tt NLF}$\ne 0$:
+\begin{displaymath}
+\mathcal{S}^{t}_{16} = \left\{
+\begin{array}{rl}
+ 1 & \textrm{Isotropic scattering in the laboratory system} \\
+ 2 & \textrm{Linearly anisotropic scattering in the laboratory system} \\
+ $n$ & \textrm{order $n-1$ anisotropic scattering in the laboratory system}
+\end{array} \right.
+\end{displaymath}
+\noindent A negative value of $\mathcal{S}^{t}_{16}$ indicates that $1/3D^{g}$ values are used as $\Sigma_1^{g}$ cross sections.
+
+\item $\mathcal{S}^{t}_{17}$: ({\tt NVD}) Number of base points in the Gauss-Legendre quadrature used to integrate
+void boundary conditions if {\tt ICOL} $=3$ and {\tt NLF}$\ne 0$:
+\begin{displaymath}
+\mathcal{S}^{t}_{17} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{Use a ({\tt NLF}$+1$)--point quadrature consistent with $P_{{\rm NLF}-1}$ theory} \\
+ 1 & \textrm{Use a {\tt NLF}--point quadrature consistent with $S_{\rm NLF}$ theory} \\
+ 2 & \textrm{Use an analytical integration consistent with diffusion theory}
+\end{array} \right.
+\end{displaymath}
+
+\end{itemize}
+
+\goodbreak
+
+The following records will also be present on the main level of a \dir{tracking}
+directory.
+
+\begin{DescriptionEnregistrement}{The \moc{bivact} records in
+\dir{tracking}}{8.0cm}
+\IntEnr
+ {NCODE\blank{7}}{$6$}
+ {Record containing the types of boundary conditions on each surface. =0 side
+ not used; =1 VOID; =2 REFL; =4 TRAN; =5 SYME; =7 ZERO. {\tt NOODE(5)} and
+ {\tt NOODE(6)} are not used.}
+\RealEnr
+ {ZCODE\blank{7}}{$6$}{$1$}
+ {Record containing the albedo value (real number) on each surface. {\tt ZOODE(5)}
+ and {\tt ZOODE(6)} are not used.}
+\OptRealEnr
+ {SIDE\blank{8}}{$1$}{$\mathcal{S}^{t}_{6}=8$}{cm}
+ {Side of a hexagon.}
+\OptRealEnr
+ {XX\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}\ne 8$}{cm}
+ {Element-ordered $X$-directed mesh spacings after mesh-splitting for type 2
+ and 5 geometries. Element-ordered radius after mesh-splitting for type 3
+ and 6 geometries.}
+\OptRealEnr
+ {YY\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=5 \ {\rm or} \ 6$}{cm}
+ {Element-ordered $Y$-directed mesh spacings after mesh-splitting for type 5
+ and 6 geometries.}
+\OptRealEnr
+ {DD\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=3 \ {\rm or} \ 6$}{cm}
+ {Element-ordered position used with type 3 and 6 geometries.}
+\IntEnr
+ {KN\blank{10}}{$N_{\rm kn}\times\mathcal{S}^{t}_{1}$}
+ {Element-ordered unknown list. $N_{\rm kn}$ is the number of unknowns per element.}
+\RealEnr
+ {QFR\blank{9}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}{}
+ {Element-ordered boundary condition. $N_{\rm surf}=4$ in Cartesian geometry and $=6$ in hexagonal geometry.}
+\IntEnr
+ {IQFR\blank{8}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}
+ {Element-ordered physical albedo indices. $N_{\rm surf}=4$ in Cartesian geometry and $=6$ in hexagonal geometry.}
+\RealEnr
+ {BFR\blank{9}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}{}
+ {Element-ordered boundary surface fractions.}
+\IntEnr
+ {MU\blank{10}}{$\mathcal{S}^{t}_{11}$}
+ {Indices used with compressed diagonal storage mode matrices.}
+\OptIntEnr
+ {IPERT\blank{7}}{$\mathcal{S}^{t}_{12}\times (\mathcal{S}^{t}_{10})^2$}{*}
+ {Mixture permutation index. This information is provided if and only if $\mathcal{S}^{t}_{6}=8, \ \mathcal{S}^{t}_{8}>0 \ {\rm and} \
+ \mathcal{S}^{t}_{9}\le 3$.}
+\DirEnr
+ {BIVCOL\blank{6}}
+ {Sub-directory containing the unit matrices (mass, stiffness, nodal coupling,
+ etc.) for a finite element discretization.}
+\end{DescriptionEnregistrement}
+
+\goodbreak
+
+The following records will be present on the \moc{/BIVCOL/} sub-directory:
+
+\begin{DescriptionEnregistrement}{Description of the \moc{/BIVCOL/} sub-directory}{8.0cm}
+\RealEnr
+ {T\blank{11}}{$L$}{}
+ {Cartesian linear product vector. $L=|\mathcal{S}^{t}_{8}|+1$}
+\RealEnr
+ {TS\blank{10}}{$L$}{}
+ {Cylindrical linear product vector.}
+\RealEnr
+ {R\blank{11}}{$L\times L$}{}
+ {Cartesian mass matrix.}
+\RealEnr
+ {RS\blank{10}}{$L\times L$}{}
+ {Cylindrical mass matrix.}
+\RealEnr
+ {Q\blank{11}}{$L\times L$}{}
+ {Cartesian stiffness matrix.}
+\RealEnr
+ {QS\blank{10}}{$L\times L$}{}
+ {Cylindrical stiffness matrix.}
+\RealEnr
+ {V\blank{11}}{$L\times (L-1)$}{}
+ {Nodal coupling matrix.}
+\RealEnr
+ {H\blank{11}}{$L\times (L-1)$}{}
+ {Piolat transform coupling matrix (used with Thomas-Raviart-Schneider method).}
+\RealEnr
+ {E\blank{11}}{$L\times L$}{}
+ {Polynomial coefficients.}
+\RealEnr
+ {RH\blank{10}}{6$\times$6}{}
+ {Hexagonal mass matrix.}
+\RealEnr
+ {QH\blank{10}}{6$\times$6}{}
+ {Hexagonal stiffness matrix.}
+\RealEnr
+ {RT\blank{10}}{3$\times$3}{}
+ {Triangular mass matrix.}
+\RealEnr
+ {QT\blank{10}}{3$\times$3}{}
+ {Triangular stiffness matrix.}
+\end{DescriptionEnregistrement}
+
+\eject