diff options
Diffstat (limited to 'doc/IGE344/SectDFMAP.tex')
| -rw-r--r-- | doc/IGE344/SectDFMAP.tex | 568 |
1 files changed, 568 insertions, 0 deletions
diff --git a/doc/IGE344/SectDFMAP.tex b/doc/IGE344/SectDFMAP.tex new file mode 100644 index 0000000..8623e06 --- /dev/null +++ b/doc/IGE344/SectDFMAP.tex @@ -0,0 +1,568 @@ +\subsection{Contents of \dir{fmap} data structure}\label{sect:resinidat} + +\vskip 0.2cm +A \dir{fmap} data structure is used to store fuel assembly (or bundle) map and +fuel information such as powers, average fluxes, control zones, burnup +or refueling scheme. The fuel bundle location are given in an +embedded sub-directory which contains the records as a \dir{geometry} +data structure. This object has a signature {\tt L\_MAP}; +it is created using the \moc{RESINI:} module. + +\subsubsection{The state-vector content}\label{sect:fmapstate} + +\noindent +The dimensioning parameters $\mathcal{S}_i$, which are stored in the state +vector for this data structure, represent: + +\begin{itemize} + +\item The number of fuel bundles per channel $N_{\rm b} = \mathcal{S}_1$ + +\item The number of fuel channels $N_{\rm ch} = \mathcal{S}_2$ + +\item The number of combustion zones $N_{\rm comb} = \mathcal{S}_3$ + +\item The number of energy groups $N_{\rm gr} = \mathcal{S}_4$ + +\item The type of interpolation with respect to burnup $I_{\rm btyp}$ = $\mathcal{S}_5$ + +\begin{displaymath} I_{\rm btyp} = \left\{ +\begin{array}{rl} + 0 & \textrm{interpolation type is not provided} \\ + 1 & \textrm{according to the time-average model} \\ + 2 & \textrm{according to the instantaneous model} \\ +\end{array} \right. +\end{displaymath} + +\item The number of bundle shift. $N_{\rm sht} = \mathcal{S}_{6}$ + +\item The number of fuel types $N_{\rm fuel} = \mathcal{S}_7$ + +\item The number of recorded parameters $N_{\rm parm} = \mathcal{S}_8$ + +\item The total number of fuel bundles $N_{\rm tot} = \mathcal{S}_9$ + +\item The number of voided reactor channels $N_{\rm void} = \mathcal{S}_{10}$ + +\item The option with respect to the core-voiding pattern $I_{\rm void}$ = $\mathcal{S}_{11}$ + +\begin{displaymath} I_{\rm void} = \left\{ +\begin{array}{rl} + 0 & \textrm{voiding pattern not provided} \\ + 1 & \textrm{full-core voiding pattern} \\ + 2 & \textrm{half-core voiding pattern} \\ + 3 & \textrm{quarter-core voiding pattern} \\ + 4 & \textrm{checkerboard-full voiding pattern} \\ + 5 & \textrm{checkerboard-half voiding pattern} \\ + 6 & \textrm{checkerboard-quarter voiding pattern} \\ + 7 & \textrm{user-defined voiding pattern} \\ +\end{array} \right. +\end{displaymath} + +\item The type of the geometry $F_{\rm t}$ = $\mathcal{S}_{12}$ + +\begin{displaymath} F_{\rm t} = \left\{ +\begin{array}{rl} + 7 & \textrm{Cartesian \dusa{3-D} geometry} \\ + 9 & \textrm{Hexagonal \dusa{3-D} geometry} \\ +\end{array} \right. +\end{displaymath} + +\item The naval-coordinate layout used by the {\tt SIM:} module $I_{\rm sim}$ = $\mathcal{S}_{13}$. + +\vskip 0.08cm + +The number of assemblies along $X$ and $Y$ axis are given using +$$ +L_{\rm x}={I_{\rm sim}\over 100} \ \ \ {\rm and} \ \ \ L_{\rm y}={\rm mod}(I_{\rm sim},100) +$$ + +\item The total number of assemblies $N_{\rm ass} = \mathcal{S}_{14}$ + +\item The number of assemblies along $X$ direction in Cartesian geometry. The number of assemblies in the radial plane in hexagonal geometry. $N_{\rm xa} = \mathcal{S}_{15}$ + +\item The number of assemblies along $Y$ direction in Cartesian geometry $N_{\rm ya} = \mathcal{S}_{16}$ + +\item The number of plane of the mesh along $Z$ direction where assemblies are located $N_{\rm z,ass} = \mathcal{S}_{17}$ + +\item The number of particularized isotopes to store in \{hcycle\} sub-directories $N_{\rm is} = \mathcal{S}_{18}$ + +\item The number of \{hcycle\} sub-directories $N_{\rm cy} = \mathcal{S}_{19}$ + +\end{itemize} + +\subsubsection{The main \dir{fmap} directory}\label{sect:fmapdir} + +\noindent +The following records and sub-directories will be found on the first level of \dir{fmap} +directory: + +\begin{DescriptionEnregistrement}{Records and sub-directories + in \dir{fmap} data structure}{7.0cm} \label{tabl:tabfmap} + +\CharEnr + {SIGNATURE\blank{3}}{$*12$} + {Signature of the \dir{fmap} data structure ($\mathsf{SIGNA}=${\tt L\_MAP\blank{7}}).} + +\IntEnr + {STATE-VECTOR}{$40$} + {Vector describing the various parameters associated with this data structure + $\mathcal{S}_i$} + +\IntEnr + {FLMIX\blank{7}}{$N_{\rm ch}, N_{\rm b}$} + {Fuel type indices per bundle or assembly subdivisions for each reactor channel.} + +\OptIntEnr + {FLMIX-INI\blank{3}}{$N_{\rm ch}, N_{\rm b}$}{$I_{\rm sim}\ne 0$} + {Fuel type indices per bundle or assembly subdivisions for each reactor channel, as defined by user + in {\tt RESINI:} module.} + +\OptCharEnr + {S-ZONE\blank{6}}{$(N_{\rm ch})*4$}{$I_{\rm sim}\ne 0$} + {identification name corresponding to the basic naval-coordinate position of an assembly, as defined by user + in {\tt RESINI:} module..} + +\IntEnr + {BMIX\blank{8}}{$N_x$, $N_y$, $N_z$} + {Renumbered mixture indices per each fuel region over the fuel-map + geometry; for the non-fuel regions these indices are set to 0.} + +\OptCharEnr + {XNAME\blank{7}}{$(N_x)*4$}{$F_{\rm t}=7$} + {Channel identification names with respect to their horizontal position in Cartesian geometry.} + +\OptCharEnr + {YNAME\blank{7}}{$(N_y)*4$}{$F_{\rm t}=7$} + {Channel identification names with respect to their vertical position in Cartesian geometry.} + +\OptCharEnr + {HNAME\blank{7}}{$(N_x)*8$}{$F_{\rm t}=9$} + {Channel identification names with respect to their radial position in hexagonal geometry.} + +\OptCharEnr + {AXNAME\blank{6}}{$(N_{\rm xa})*4$}{$F_{\rm t}=7$} + {Name of the assembly on X-direction (4 character name per assembly) in Cartesian geometry} + +\OptCharEnr + {AYNAME\blank{6}}{$(N_{\rm ya})*4$}{$F_{\rm t}=7$} + {Name of the assembly on Y-direction (4 character name per assembly) in Cartesian geometry} + +\OptDirlEnr + {ASSEMBLY\blank{4}}{$N_{\rm ass}$}{} + {List of {\sl assembly} directories. Each component of this list follows the specification + presented in \Sect{fmapdirass}.} + +\OptIntEnr + {B-ZONE\blank{6}}{$N_{\rm ch}$}{$N_{\rm comb}\geq1$} + {Combustion-zone indices per channel.} + +\RealEnr + {BURN-AVG\blank{4}}{$N_{\rm comb}$}{MW d t$^{-1}$} + {Average exit burnups per combustion zone.} + +\OptRealEnr + {BURN-INST\blank{3}}{$N_{\rm ch}, N_{\rm b}$}{$I_{\rm btyp}=2$}{MW d t$^{-1}$} + {Instantaneous burnups per bundle or assembly subdivisions for each channel.} + +\OptRealEnr + {BURN-BEG\blank{4}}{$N_{\rm ch}, N_{\rm b}$}{$I_{\rm btyp}=1$}{MW d t$^{-1}$} + {Low burnup integration limits according to the time-average model.} + +\OptRealEnr + {BURN-END\blank{4}}{$N_{\rm ch}, N_{\rm b}$}{$I_{\rm btyp}=1$}{MW d t$^{-1}$} + {Upper burnup integration limits according to the time-average model.} + +\OptRealEnr + {BUND-PW\blank{5}}{$N_{\rm ch}, N_{\rm b}$}{*}{kW} + {Bundle-powers set in \moc{RESINI:} module or recovered from \moc{L\_POWER} object.} + +\OptRealEnr + {BUND-PW-INI\blank{1}}{$N_{\rm ch}, N_{\rm b}$}{*}{kW} + {Beginning-of-transient bundle-powers recovered from \moc{L\_POWER} object.} + +\OptRealEnr + {FLUX-AV\blank{5}}{$N_{\rm ch}, N_{\rm b}, N_{\rm gr}$}{*}{cm$^{-2}$ s$^{-1}$} + {The normalized average fluxes recorded per each fuel bundle and for + each energy group, recovered from \moc{L\_POWER} object.} + +\OptRealEnr + {REACTOR-PW\blank{2}}{$1$}{*}{MW} + {Full reactor power set in \moc{RESINI:} module or recovered from \moc{L\_POWER} object.} + +\OptRealEnr + {AXIAL-FPW\blank{3}}{$N_{\rm b}$}{*}{1} + {Axial power form factor set in \moc{RESINI:} module.} + +\RealEnr + {B-EXIT\blank{6}}{$1$}{MW d t$^{-1}$} + {Core-average discharge burnup.} + +\IntEnr + {REF-SHIFT\blank{3}}{$N_{\rm comb}$} + {Bundle-shifts per combustion zone. A bundle-shift corresponds to the + number of displaced fuel bundles during the refueling operation.} + +\IntEnr + {REF-VECTOR\blank{2}}{$N_{\rm comb}, N_{\rm b}$} + {Refueling pattern vector per combustion zone.} + +\IntEnr + {REF-SCHEME\blank{2}}{$N_{\rm ch}$} + {Refueling scheme of each channel; it corresponds to the positive + or negative bundle-shift number according to the flow direction. } + +\RealEnr + {REF-RATE\blank{4}}{$N_{\rm ch}$}{kg d$^{-1}$} + {Channel refueling rates.} + +\OptRealEnr + {REF-CHAN\blank{4}}{$N_{\rm ch}$}{}{d} + {Time values at which channels are refueled inside a refueling time + period.} + +\OptRealEnr + {DEPL-TIME\blank{3}}{$1$}{}{d} + {Refueling time period in days.} + +\OptRealVar + {\{pshift\}}{$N_{\rm ch}, N_{\rm b}$}{$N_{\rm sht}\ge 1$}{$kW$} + {The power of the bundles shifted the $i$-th time.} + +\OptRealVar + {\{bshift\}}{$N_{\rm ch}, N_{\rm b}$}{$N_{\rm sht} \ge 1$}{$MW d T^{-1}$} + {The burnup of the bundles shifted the $i$-th time.} + +\OptIntVar + {\{ishift\}}{$N_{\rm ch},N_{\rm b}$}{$N_{\rm sht} \ge 1$} + {The number of shifts per bundle during refueling.} + +\OptRealEnr + {AX-SHAPE\blank{4}}{$N_{\rm ch}, N_{\rm b}$}{$I_{\rm btyp}=1$}{} + {Normalized axial power-shape values over the fuel bundles. Equal to + fuel-bundle powers divided by channel powers.} + +\OptRealEnr + {EPS-AX\blank{6}}{$1$}{$I_{\rm btyp}=1$}{} + {Convergence factor for the axial power-shape calculation; it is + defined as a relative error between the two successives calculations.} + +\OptRealEnr + {FQ\blank{10}}{$1$}{}{} + {Hot spot factor: power of the hottest 3D Cartesian pin spot + normalized to the mean power of a 3D Cartesian pin spot. + $$ + FQ={P_{\rm \overset{max}{x,y,z}}(x,y,z)\over P_{\rm \overset{moy}{x,y,z}}(x,y,z)} + $$ + where P(x,y,z) is the power of an axial part of a pin located at the coordinates + (x,y,z). + } + +\OptRealEnr + {FXY\blank{9}}{$1$}{}{} + {Radial hot spot factor: power of the hottest pin normalized to the mean power of a pin. + $$ + Fxy={P_{\rm \overset{max}{x,y}}(x,y)\over P_{\rm \overset{moy}{x,y}}(x,y)} + $$ + with $$P(x,y)=\displaystyle \int_{0}^{zmax} + P(x,y,z) \, \mathrm{d}z$$ + } + +\OptRealEnr + {FXYZ\blank{8}}{$N_{\rm z,ass}$}{}{} + {For each axial mesh, power of the hottest 2D Cartesian pin spot normalized to the mean + power of a 3D Cartesian pin spot. + $$ + Fxy(z)={P_{\rm \overset{max}{x,y}}(x,y,z)\over P_{\rm \overset{moy}{x,y,z}}(x,y,z)} + $$ + } + +\OptRealEnr + {FXYASS\blank{6}}{$N_{\rm ass}$}{}{} + {For each assembly, power of the hottest pin normalized to the mean power of a pin. + $$ + Fxy(iass)={P_{\rm \overset{max}{x,y}}(x,y,iass)\over P_{\rm \overset{moy}{x,y}}(x,y)} + $$ + with $$P(x,y,iass)=\displaystyle \int_{0}^{zmax} + P(x,y,z,iass) \, \mathrm{d}z$$ + } + +\OptCharEnr + {HFOLLOW\blank{5}}{$(N_{\rm is})*8$}{$N_{\rm is}>0$} + {Name of the particularized isotopes to store in \{hcycle\} directory.} + +\DirEnr + {GEOMAP\blank{6}} + {Sub-directory containing the embedded \dusa{3D}-Cartesian \dir{geometry} of the fuel lattice.} + +\DirlEnr + {FUEL\blank{8}}{$N_{\rm fuel}$} + {List of fuel--type sub-directories. Each component of the list is a directory containing + the information relative to a single fuel type.} + +\OptDirEnr + {ROD-INFO\blank{4}}{*} + {Sub-directory containing the information corresponding to the local rod insertion for PWR. + This sub-directory follows the specification presented in \Sect{dirrodinfo}.} + +\OptDirlEnr + {\{hcycle\}}{$N_{\rm burn}$}{$N_{\rm cy}> 0$} + {Sub-directory containing information related to a fuel cycle in a PWR. $N_{\rm burn}$ is the number of burnup steps used during + the simulation of the cycle. These burnup steps may not be of increasing values. If module {\tt TINST:} was used to burn fuel, the + name of the \dusa{hcycle} directory is ``{\tt \_TINST}''.} + +\OptCharEnr + {CYCLE-NAMES\blank{1}}{$(N_{\rm cy})*12$}{$N_{\rm cy}>0$} + {Names of fuel cycle sub-directories \{hcycle\}.} + +\OptDirlEnr + {PARAM\blank{7}}{$N_{\rm parm}$}{$N_{\rm parm}>0$} + {List of parameter--type sub-directories corresponding to actual time. Each component of the list is a directory + containing the information relative to a single parameter (see Sect.~\ref{sect:dirparam}). The total number of sub-directories + corresponds to the total number of recorded parameters $N_{\rm parm}$ (excluding burnups).} + +\end{DescriptionEnregistrement} + +\noindent The contents of the \moc{GEOMAP} sub-directory correspond to the typical +contents of the \dir{geometry} data structure. +The dimensioning parameters $N_x$, $N_y$, and $N_z$ represent the number +of volumes along the corresponding axis in the fuel-map geometry.\\ + +%\eject +The shifting information records \{pshift\}, \{bshift\} and \{ishift\} +will be composed using the following FORTRAN instructions, respectively, as + \begin{displaymath} + \mathtt{WRITE(}\mathsf{pshift}\mathtt{,'(A6,I2)')} \ + \mathtt{'PSHIFT'},ell + \end{displaymath} + \begin{displaymath} + \mathtt{WRITE(}\mathsf{bshift}\mathtt{,'(A6,I2)')} \ + \mathtt{'BSHIFT'},ell + \end{displaymath} + \begin{displaymath} + \mathtt{WRITE(}\mathsf{ishift}\mathtt{,'(A6,I2)')} \ + \mathtt{'ISHIFT'},ell + \end{displaymath} +for $1\leq ell \leq N_{\rm sht}$. \\ + +Each time a bundle is shifted and stay in the reactor, its burnup and power will be saved +in the records \{bshift\} and \{pshift\}. For example, \{bshift i\} and \{pshift i\} will +contain all the burnups and powers of bundles that have been shifted $i$-th time. + +\subsubsection{The \moc{FUEL} sub-directories}\label{sect:dirfuel} + +Each \moc{FUEL} sub-directory contains the information corresponding +to a single fuel type. Inside each sub-directory, the following records +will be found: + +\begin{DescriptionEnregistrement}{Records in \moc{FUEL} sub-directories} +{7.0cm} \label{tabl:tabfuel} + +\IntEnr + {MIX\blank{9}}{$1$} {Fuel-type mixture number.} + +\IntEnr + {TOT\blank{9}}{$1$} {Total number of fuel bundles for this fuel type.} + +\IntEnr + {MIX-VOID\blank{4}}{$1$} {Voided-cell mixture number for this fuel type.} + +\RealEnr +{WEIGHT\blank{6}}{$1$}{kg} +{Fuel weight in a bundle for this fuel type.} + +\RealEnr +{ENRICH\blank{6}}{$1$}{wt\%} +{Fuel enrichment for this fuel type.} + +\RealEnr +{POISON\blank{6}}{$1$}{} +{Poison load for this fuel type.} + +\end{DescriptionEnregistrement} + +\subsubsection{The \{hcycle\} sub-directories}\label{sect:dirhcycle} + +Each \{hcycle\} sub-directory contains the information corresponding +to a single PWR fuel cycle. Inside each sub-directory, the following records +will be found: + +\begin{DescriptionEnregistrement}{Records in \{hcycle\} sub-directories} +{7.0cm} \label{tabl:tabhcycle} + +\CharEnr + {ALIAS\blank{7}}{$(*12$} + {Name of the cycle sub-directory.} + +\RealEnr + {TIME\blank{8}}{$1$}{d} + {Depletion time corresponding to instantaneous burnup values.} + +\OptDirlEnr + {PARAM\blank{7}}{$N_{\rm parm}$}{$N_{\rm parm}>0$} + {List of parameter--type sub-directories corresponding to refuelling time. Each component of the list is a directory + containing the information relative to a single parameter (see Sect.~\ref{sect:dirparam}). The total number of sub-directories + corresponds to the total number of recorded parameters $N_{\rm parm}$ (excluding burnups).} + +\RealEnr + {BURNAVG\blank{5}}{$1$}{MW d t$^{-1}$} + {Average burnup of the assembly.} + +\CharEnr + {NAME\blank{8}}{$(N_{\rm ch})*12$} + {Names of each assembly or of each quart-of assembly during a refuelling cycle. All + quart-of-assembly belonging to the same assembly have the same name.} + +\CharEnr + {CYCLE\blank{7}}{$(L_{\rm x}\times L_{\rm y})*4$} + {Shuffling matrix for refuelling as provided by the plant operator. The name "$|$" + is reserved for empty locations.} + +\IntEnr + {FLMIX\blank{7}}{$N_{\rm ch}, N_{\rm b}$} + {Fuel type indices per assembly subdivisions for each reactor channel.} + +\RealEnr + {BURN-INST\blank{3}}{$N_{\rm ch}, N_{\rm b}$}{MW d t$^{-1}$} + {Instantaneous burnups per assembly subdivisions for each channel.} + +\RealEnr + {POWER-BUND\blank{2}}{$N_{\rm ch}, N_{\rm b}$}{kW} + {Powers per assembly subdivisions for each channel.} + +\RealEnr + {K-EFFECTIVE\blank{1}}{$1$}{} + {Effective multiplication factor $k_{\mathrm{eff}}$.} + +\OptRealEnr + {FOLLOW\blank{6}}{$N_{\rm ch}, N_{\rm b}, N_{\rm is}$}{$N_{\rm is}>0$}{(cm b)$^{-1}$} + {Number densities of the particularized isotopes.} + +\end{DescriptionEnregistrement} + +\clearpage + +\subsubsection{The \moc{PARAM} sub-directories}\label{sect:dirparam} + +Each \moc{PARAM} sub-directory contains the information corresponding +to a single local or global parameter (excluding burnups). Inside a such sub-directory, +the following records will be found: + +\begin{DescriptionEnregistrement}{Records in \moc{PARAM} sub-directories} +{7.0cm} \label{tabl:tabparam} + +\CharEnr + {P-NAME\blank{6}}{$*12$} {Unique identification name of this parameter. This + name is user-defined; however, it is recommended to use the following pre-defined + values: + +\begin{tabular}{|c|l|} +\hline +{\tt C-BORE} & Boron concentration \\ +{\tt T-FUEL} & Averaged fuel temperature \\ +{\tt T-SURF} & Surfacic fuel temperature \\ +{\tt T-COOL} & Averaged coolant temperature \\ +{\tt D-COOL} & Averaged coolant density \\ +\hline +\multicolumn{2}{|l|}{CANDU-only parameters:} \\ +\hline +{\tt T-MODE} & Averaged moderator temperature\\ +{\tt D-MODE} & Averaged moderator density \\ +\hline +\end{tabular} + } + +\CharEnr + {PARKEY\blank{6}}{$*12$} {Corresponding name of this parameter as recorded + in a multi-parameter Compo file.} + +\IntEnr + {P-TYPE\blank{6}}{$1$} {Number associated to the type of recorded parameter: + $ptype=1$ for global parameter; $ptype=2$ for local parameter.} + +\OptRealEnr + {P-VALUE\blank{5}}{$1$}{$ptype=1$}{}{Recorded single value for global parameter. Temperatures are given in K and densities are given in g/cc.} + +\OptRealEnr + {}{$N_{\rm ch}, N_{\rm b}$}{$ptype=2$}{}{Recorded values for local parameter per each fuel + bundle for every channel. Temperatures are given in K and densities are given in g/cc.} + +\end{DescriptionEnregistrement} + +\subsubsection{The \moc{ROD-INFO} sub-directory}\label{sect:dirrodinfo} + +The \moc{ROD-INFO} sub-directory contains the information corresponding +to the local rod insertion for PWR. This sub-directory is created after the first calling to the \moc{ROD:} module. Inside this sub-directory, +the following records will be found: + +\begin{DescriptionEnregistrement}{Records in \moc{ROD-INFO} sub-directories} +{7.0cm} \label{tabl:tabrodinfo} + +\RealEnr + {ROD-INIT\blank{4}}{$1$}{} {Default value for the rod field. This value corresponds to no rod inserted.} + +\IntEnr + {INS-MAX\blank{4}}{$1$} {Number associated to the maximum of rod insertion steps possible.} + +\RealEnr + {STEP-CM\blank{5}}{$1$}{} {Length of one rod insertion step (in cm).} + +\IntEnr + {REFL-BOTTOM\blank{1}}{$1$} {Number of bottom reflective axial-planes.} + +\IntEnr + {NB-GROUP\blank{4}}{$1$} {Number of rod groups.} + +\IntEnr + {MAX-MIX\blank{5}}{$1$} {Maximum number of rod zones for all the rods defined.} + +\OptCharEnr + {ROD-NAME\blank{4}}{$(N_{\rm gr})*3$}{} + {Name of each rod group defined by user in {\tt ROD:} module.} + +\IntEnr + {ROD-INSERT\blank{4}}{$N_{gr}$} {Insertion of each rod group defined by user in {\tt ROD:} module.} + +\RealEnr + {ROD-RIN\blank{5}}{$N_{gr}, N_{mmix}$}{} {Rod identification numbers (RIN) for each rod group defined by user in {\tt ROD:} module.} + +\IntEnr + {ROD-NBZONE\blank{2}}{$N_{gr}$} {Number of RIN zones for each rod group defined by user in {\tt ROD:} module.} + +\RealEnr + {ROD-HEIGHT\blank{2}}{$N_{gr}, N_{mmix}$}{} + {Height between the bottom of the rod and the beginning of the RIN zone for each rod group and each RIN zone defined by user in {\tt ROD:} module.} + +\OptCharEnr + {ROD-MAP\blank{5}}{$(N_{\rm ch})*3$}{} + {Identification name corresponding to the rod map as defined by user + in {\tt ROD:} module.} + +\end{DescriptionEnregistrement} + +\subsubsection{The ASSEMBLY sub-directory}\label{sect:fmapdirass} + +\begin{DescriptionEnregistrement}{Assembly type sub-directory}{7.0cm} +\CharEnr + {LABEL\blank{7}}{$*8$} + {Label of the assembly. It consists a 8 character name composed of the AYNAME and AXNAME} + +\RealEnr + {PIN-POWER\blank{3}}{$N_{pin}^2*N_{\rm z,ass}$}{} + {array containing the pin power for each pin on each mesh plane of the assembly.} + +\RealEnr + {ASS-POWER\blank{3}}{1}{} + {total assembly power.} + +\RealEnr + {SIG\_F*PHI\blank{3}}{$N_{pin}^2*N_{\rm z,ass}$}{} + {array containing the integral of $\Sigma_f$ times the flux for each pin on each mesh plane of the assembly.} + +\RealEnr + {FLUX\blank{8}}{$N_{pin}^2*N_{\rm z,ass}*N_g$}{} + {array containing the flux of each group for each pin on each mesh plane of the assembly.} + +\end{DescriptionEnregistrement} + +\clearpage |
