summaryrefslogtreecommitdiff
path: root/doc/IGE335/Section5.01.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/IGE335/Section5.01.tex')
-rw-r--r--doc/IGE335/Section5.01.tex50
1 files changed, 50 insertions, 0 deletions
diff --git a/doc/IGE335/Section5.01.tex b/doc/IGE335/Section5.01.tex
new file mode 100644
index 0000000..ba4f706
--- /dev/null
+++ b/doc/IGE335/Section5.01.tex
@@ -0,0 +1,50 @@
+\subsection{Scattering cross sections}\label{sect:ExXSData}
+
+In DRAGON, the angular dependence of the
+scattering cross section is expressed in a Legendre series expansion of
+the form:
+ $$
+\Sigma_{s}(\Omega\cdot\Omega')=\Sigma_{s}(\mu)=
+\sum_{l=0}^{L}\left({{(2l+1)}\over{4\pi}}\right)\Sigma_{s,l}P_{l}(\mu).
+ $$
+Since the Legendre polynomials satisfy the following
+orthogonality conditions:
+ $$
+\int_{-1}^{1} d\mu P_{l}(\mu)P_{m}(\mu) =
+\left({{2\delta_{l,m}}\over{(2l+1)}}\right),
+ $$
+we will have
+ $$
+\Sigma_{s,l}=\int_{-1}^{1}d\mu\int_{0}^{2\pi}d\varphi\Sigma_{s}(\mu)P_{l}(\mu)=
+2\pi \int_{-1}^{1}d\mu\Sigma_{s}(\mu)P_{l}(\mu).
+ $$
+
+Let us now consider the following three-group (\dusa{ngroup}=3) isotropic and
+linearly anisotropic scattering cross sections ($L$=\dusa{naniso}=2) given by:
+
+\begin{center}
+\begin{tabular}{|llccc|}\hline\hline
+$l$ & $g$ & $\Sigma_{s,l}^{g\to 1}$ (\xsunit)
+ & $\Sigma_{s,l}^{g\to 2}$ (\xsunit)
+ & $\Sigma_{s,l}^{g\to 3}$ (\xsunit) \\ \hline
+ & 1 & 0.90 & 0.80 & 0.00 \\
+0 & 2 & 0.00 & 0.70 & 0.60 \\
+ & 3 & 0.00 & 0.30 & 0.40 \\ \hline
+ & 1 & 0.09 & 0.05 & 0.08 \\
+1 & 2 & 0.00 & 0.07 & 0.06\\
+ & 3 & 0.03 & 0.00 & 0.04 \\ \hline\hline
+\end{tabular}
+\end{center}
+
+\noindent
+In DRAGON this scattering cross section must be entered as
+
+\begin{verbatim}
+SCAT (* L=0 *) 1 1 (* 3->1 *) (* 2->1 *) (* 1->1 *) 0.90
+ 3 3 (* 3->2 *) 0.30 (* 2->2 *) 0.70 (* 1->2 *) 0.80
+ 2 3 (* 3->3 *) 0.40 (* 2->3 *) 0.60 (* 1->3 *)
+SCAT (* L=1 *) 3 3 (* 3->1 *) 0.03 (* 2->1 *) 0.00 (* 1->1 *) 0.09
+ 2 2 (* 3->2 *) (* 2->2 *) 0.07 (* 1->2 *) 0.05
+ 3 3 (* 3->3 *) 0.04 (* 2->3 *) 0.06 (* 1->3 *) 0.08
+\end{verbatim}
+