diff options
Diffstat (limited to 'doc/IGE335/Section3.26.tex')
| -rw-r--r-- | doc/IGE335/Section3.26.tex | 421 |
1 files changed, 421 insertions, 0 deletions
diff --git a/doc/IGE335/Section3.26.tex b/doc/IGE335/Section3.26.tex new file mode 100644 index 0000000..9cbeeaf --- /dev/null +++ b/doc/IGE335/Section3.26.tex @@ -0,0 +1,421 @@ +\subsection{The {\tt MPO:} module}\label{sect:MPOData} + +This component of the lattice code is dedicated to the constitution of the +reactor database in MPO format, similar to the file produced by APOLLO3.\cite{Apollo3} +The MPO file intended to store {\sl all} the nuclear data, produced in +the lattice code, that is useful +in reactor calculations including fuel management and space-time kinetics. +Multigroup lattice calculations are too expensive to be executed dynamically +from the driver of the global reactor calculation. A more feasible +approach is to create a reactor database where a finite number of lattice +calculation results are tabulated against selected {\sl global parameters} +chosen so as to represent expected operating conditions of the reactor. The +\moc{MPO:} operator is used to create and construct a {\sc MPO} file. +The MPO file is written in {\sc hdf5} format, allowing full portability and hierarchical +data organization. It can be edited and modified using the HDFView tool. + +\vskip 0.1cm + +Each elementary calculation is characterized by a tuple of {\sl global parameters}. +These global parameters are of different types, depending on the nature of the +study under consideration: type of assembly, power, temperature in a mixture, +concentration of an isotope, time, burnup or exposure rate in a depletion calculation, +etc. Each step of a depletion calculation represents an elementary calculation. +The {\sc MPO} file is often presented as a {\sl multi-parameter reactor database}. + +\vskip 0.1cm + +For each elementary calculation, the results are recovered from the output of the +\moc{EDI:} operator and stored in a set of {\sl homogenized mixture} +directories. The \moc{EDI:} operator is responsible for performing condensation +in energy and homogenization in space of the macroscopic and microscopic cross +sections. All the elementary calculations gathered in a single {\sc mpo} file are +characterized by a single output geometry and a unique output energy-group +structure. The {\sc mpo} file may contain many geometry/energy-group combinations. + +\vskip 0.1cm + +In each homogenized mixture directory, the \moc{MPO:} operator recover +cross sections for a number of {\sl particularized isotopes} and {\sl macroscopic +residual sets}, a collection of isotopic cross sections weighted by isotopic number densities. +Cross sections for particularized isotopes and macroscopic sets are recovered for +{\sl selected reactions}. Other information is also recovered: multigroup neutron +fluxes, isotopic number densities, fission spectrum and a set +of {\sl local variables}. The local variables are values that characterize each +homogenized mixture: local power, burnup, exposure rate, etc. Some local variables +are arrays of values (eg: SPH equivalence factors). Discontinuity factors and equivalent albedos +are written in groups {\tt discontinuity} and {\tt flux}, respectively. Finally, note that cross section +information written on the {\sc mpo} file is {\sl not} transport corrected and {\sl not} +SPH corrected. + +\vskip 0.1cm + +A different specification of the \moc{MPO:} function call is used for +creation and construction of the {\sc mpo} file. +\begin{itemize} +\item The first specification is used to initialize the {\sc mpo} data structure +as a function of the \dds{microlib} used in the reference calculation. Optionnally, +the homogenized geometry is also provided. The initialization call is also used to +set the choice of global parameters, local variables, particularized isotopes, +macroscopic sets and selected reactions. +\item A modification call to the \moc{MPO:} function is performed after each +elementary calculation in order to recover output information processed by \moc{EDI:} +(condensed and homogenized cross sections) and \moc{EVO:} (burnup dependant values). +Global parameters and local variables can optionnally be recovered from \dds{microlib} +objects. The \moc{EDI:} calculation is generally performed with option {\tt MICR ALL}. +\end{itemize} + +The calling specifications are: + +\vskip -0.5cm + +\begin{DataStructure}{Structure \dstr{MPO:}} +$\{$~\dusa{MPONAM} \moc{:=} \moc{MPO:} $[$ \dusa{MPONAM} $]~[$~\dusa{HMIC} $]$ \moc{::} \dstr{mpo\_data1} \\ +~~$|$~\dusa{MPONAM} \moc{:=} \moc{MPO:} \dusa{MPONAM}~\dusa{EDINAM}~$[$ \dusa{BRNNAM} $]~[$ \dusa{HMIC1}~$[$~\dusa{HMIC2} $]~]$ \moc{::} \dstr{mpo\_data2} \\ +~~$|$~\dusa{MPONAM} \moc{:=} \moc{MPO:} \dusa{MPONAM} $[[$ \dusa{MPORHS} $]]$ \moc{::} dstr{mpo\_data3} $\}$ \\ +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmm} + +\item[\dusa{MPONAM}] {\tt character*12} name of the {\sc lcm} object containing the +{\sl master} {\sc mpo} data structure. + +\item[\dusa{HMIC}] {\tt character*12} name of the reference \dds{microlib} (type {\tt +L\_LIBRARY}) containing the microscopic cross sections. + +\item[\dusa{EDINAM}] {\tt character*12} name of the {\sc lcm} object (type {\tt +L\_EDIT}) containing the {\sc edition} data structure corresponding to an elementary +calculation. The {\sc edition} data produced by the last call to the {\tt EDI:} module +is used. + +\item[\dusa{BRNNAM}] {\tt character*12} name of the {\sc lcm} object (type {\tt +L\_BURNUP}) containing the {\sc burnup} data structure. This object is compulsory if one +of the following parameters is used: \moc{IRRA}, \moc{FLUB} and/or \moc{TIME}. + +\item[\dusa{HMIC1}] {\tt character*12} name of a \dds{microlib} (type {\tt +L\_LIBRARY}) containing global parameter information. + +\item[\dusa{HMIC2}] {\tt character*12} name of a \dds{microlib} (type {\tt +L\_LIBRARY}) containing global parameter information. + +\item[\dusa{MPORHS}] {\tt character*12} name of the {\sl read-only} {\sc mpo} data structure. This +data structure is concatenated to \dusa{MPONAM} using the \dusa{mpo\_data3} data structure, +as presented in \Sect{descmpo3}. \dusa{MPORHS} must be defined with the same number of energy +groups and the same number of homogeneous regions as \dusa{MPONAM}. Moreover, all the +global and local parameters of \dusa{MPORHS} must be defined in \dusa{MPONAM}. \dusa{MPONAM} +may be defined with {\sl global} parameters not defined in \dusa{MPORHS}. + +\item[\dusa{mpo\_data1}] input data structure containing initialization information (see \Sect{descmpo1}). + +\item[\dusa{mpo\_data2}] input data structure containing information related to the recovery of an +elementary calculation (see \Sect{descmpo2}). + +\item[\dusa{mpo\_data3}] input data structure containing information related to the catenation of one or many +{\sl read-only} {\sc mpo} file(s) (see \Sect{descmpo3}). + +\end{ListeDeDescription} + +\newpage + +\subsubsection{Initialization data input for module {\tt MPO:}}\label{sect:descmpo1} + +\begin{DataStructure}{Structure \dstr{mpo\_data1}} +$[$~\moc{EDIT} \dusa{iprint}~$]$ \\ +$[$~\moc{COMM}~\dusa{comment}~$]$ \\ +$[[$~\moc{PARA}~\dusa{parkey} \\ +~~~\{~\moc{TEMP}~\dusa{micnam}~\dusa{imix}~$|$~\moc{CONC}~\dusa{isonam1}~\dusa{micnam}~\dusa{imix}~$|$~\moc{IRRA}~$|$~\moc{FLUB}~$|$ \\ +~~~~~~\moc{PUIS}~$|$~\moc{MASL}~$|$~\moc{FLUX}~$|$~\moc{TIME}~$|$~\moc{VALU}~\{~\moc{REAL}~$|$~\moc{CHAR}~$|$~\moc{INTE}~\}~\} \\ +$]]$ \\ +$[[$~\moc{LOCA}~\dusa{parkey} \\ +~~~\{~\moc{TEMP}~$|$~\moc{CONC}~\dusa{isonam2}~$|$~\moc{IRRA}~$|$~\moc{FLUB}~$|$~~\moc{FLUG}~$|$~\moc{PUIS}~$|$~\moc{MASL}~$|$~\moc{FLUX}~$|$~\moc{EQUI}~\} \\ +$]]$ \\ +$[$~\moc{ISOT}~\{~\moc{TOUT}~$|$ \moc{MILI}~\dusa{imil}~$|~[$~\moc{FISS}~$]~[$~\moc{PF}~$]~[$~(\dusa{HNAISO}(i),~i=1,$N_{\rm iso}$) $]$~\}~$]$ \\ +$[$~\moc{REAC}~(\dusa{HNAREA}(i),~i=1,$N_{\rm reac}$) $]$ \\ +{\tt ;} +\end{DataStructure} + +\goodbreak +\noindent where +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{EDIT}] keyword used to set \dusa{iprint}. + +\item[\dusa{iprint}] index used to control the printing in module {\tt +MPO:}. =0 for no print; =1 for minimum printing (default value). + +\item[\moc{COMM}] keyword used to input a general comment for the {\sc mpo} file. + +\item[\dusa{comment}] {\tt character*132} user-defined comment. + +\item[\moc{PARA}] keyword used to define a single global parameter. + +\item[\moc{LOCA}] keyword used to define a single local variable (a local variable +may be a single value or an array of values). + +\item[\dusa{parkey}] {\tt character*24} user-defined keyword associated to a global +parameter or local variable. + +\item[\dusa{micnam}] {\tt character*12} name of the \dds{microlib} (type {\tt +L\_LIBRARY}) associated to a global parameter. The corresponding \dds{microlib} will be required on +RHS of the \moc{MPO:} call described in Sect.~\ref{sect:descmpo2}. + +\item[\dusa{imix}] index of the mixture associated to a global parameter. This mixture is +located in \dds{microlib} named \dusa{micnam}. + +\item[\dusa{isonam1}] {\tt character*8} alias name of the isotope associated to a global +parameter. This isotope is located in \dds{microlib} data structure named \dusa{micnam}. + +\item[\dusa{isonam2}] {\tt character*8} alias name of the isotope associated to a local +variable. This isotope is located in the \dds{microlib} directory of the {\sc edition} +data structure named \dusa{EDINAM}. + +\item[\moc{TEMP}] keyword used to define a temperature (in Kelvin) as global parameter or +local variable. + +\item[\moc{CONC}] keyword used to define a number density as global parameter or +local variable. + +\item[\moc{IRRA}] keyword used to define a burnup (in MWday/Tonne) as global +parameter or local variable. + +\item[\moc{FLUB}] keyword used to define a {\sl fuel-only} exposure rate (in n/kb) as global +parameter or local variable. The exposure rate is recovered from the \dusa{BRNNAM} +LCM object. + +\item[\moc{FLUG}] keyword used to define an exposure rate in global homogenized mixtures (in n/kb) as +local variable. The exposure rate is recovered from the \dusa{BRNNAM} +LCM object. + +\item[\moc{PUIS}] keyword used to define the power as global parameter or +local variable. + +\item[\moc{MASL}] keyword used to define the mass density of heavy isotopes as +global parameter or local variable. + +\item[\moc{FLUX}] keyword used to define the volume-averaged, energy-integrated flux as +global parameter or local variable. + +\item[\moc{TIME}] keyword used to define the time (in seconds) as global parameter. + +\item[\moc{EQUI}] keyword used to define the SPH equivalence factors as +local variable. A set of SPH factors can be defined as local +variables. Note that the cross sections and fluxes stored in the {\sc mpo} file are +{\sl not} SPH corrected. + +\item[\moc{VALU}] keyword used to define a user-defined quantity as global parameter. +This keyword must be followed by the type of parameter. + +\item[\moc{REAL}] keyword used to indicate that the user-defined global parameter +is a floating point value. + +\item[\moc{CHAR}] keyword used to indicate that the user-defined global parameter +is a {\tt character*12} value. + +\item[\moc{INTE}] keyword used to indicate that the user-defined global parameter +is an integer value. + +\item[\moc{ISOT}] keyword used to select the set of particularized isotopes. The macroscopic +residual {\tt 'TotalResidual\_mix'} is always included as the last isotope in the list. + +\item[\moc{TOUT}] keyword used to select all the available isotopes in the reference +\dds{microlib} named \dusa{HMIC} as particularized isotopes. + +\item[\moc{MILI}] keyword used to select the isotopes in the reference +\dds{microlib} named \dusa{HMIC} from a specific mixture as particularized isotopes. + +\item[\dusa{imil}] index of the mixture where the particularized isotopes are recovered. + +\item[\moc{FISS}] keyword used to select all the available fissile isotopes in the reference +\dds{microlib} named \dusa{HMIC} as particularized isotopes. + +\item[\moc{PF}] keyword used to select all the available fission products in the reference +\dds{microlib} named \dusa{HMIC} as particularized isotopes. + +\item[\dusa{HNAISO}(i)] {\tt character*12} user-defined isotope name. $N_{\rm iso}$ is the +total number of explicitely--selected particularized isotopes. + +\item[\moc{REAC}] keyword used to select the set of nuclear reactions. By default, the following reactions are selected: + +\begin{tabular}{p{3.5cm} p{12.5cm}|} +\moc{Total} & Total cross sections as $\sigma_g^{\rm absorption}+\sigma_{0,g}^{\rm diffusion}$\\ +\moc{Absorption} & Absorption cross sections $\sigma_g^{\rm absorption}$\\ +\moc{Diffusion} & Scattering cross section for each available Legendre order \\ +& $\sigma_{\ell,g}^{\rm diffusion}$. These cross sections are {\sl not} multiply by the $2\ell+1$ \\ +& factor.\\ +\moc{Fission} & Fission cross section \\ +\moc{FissionSpectrum} & Steady-state fission spectrum \\ +\moc{Nexcess} & Excess cross section due to (n,$x$n) reactions \\ +\moc{NuFission} & $\nu\Sigma_{\rm f}$ cross sections \\ +\moc{Scattering} & Scattering reaction as $\sigma_{\ell,g\rightarrow g'}=\sigma_{\ell,g\rightarrow g'}^{\rm elastic}+ +\sigma_{\ell,g\rightarrow g'}^{\rm inelastic}+\sigma_{\ell,g\rightarrow g'}^{({\rm n},x{\rm n})}$\\ +\moc{CaptureEnergyCapture} & Energy production cross section for (n,$\gamma$) reaction only \\ +\moc{FissionEnergyFission} & Energy production cross section for (n,f) reaction only \\ +\end{tabular} + +\item[\dusa{HNAREA}] {\tt character*20} name of a user-selected reaction in addition to default set. \dusa{HNAREA} is +selected among the following values: + +\begin{tabular}{p{3.3cm} p{12.7cm}|} +\moc{TotalP1} & Total $P_1$-weighted cross sections \\ +\moc{ElasticDiffusion} & Elastic scattering cross section for each available Legendre order \\ +\moc{InelasticDiffusion} & Inelastic scattering cross section for each available Legendre order \\ +\moc{NxnDiffusion} & (n,$x$n) scattering cross section for each available Legendre order \\ +\moc{ElasticScattering} & Elastic scattering reaction $\sigma_{\ell,g\rightarrow g'}^{\rm elastic}$ \\ +\moc{InelasticScattering} & Inelastic scattering reaction $\sigma_{\ell,g\rightarrow g'}^{\rm inelastic}$ \\ +\moc{NxnScattering} & (n,$x$n) scattering reaction $\sigma_{\ell,g\rightarrow g'}^{({\rm n},x{\rm n})}$ \\ +\moc{MT16} & (n,2n) production cross sections \\ +\moc{MT17} & (n,3n) production cross sections \\ +\moc{MT28} & (n,np) production cross sections \\ +\moc{MT37} & (n,4n) production cross sections \\ +\moc{MT103} & (n,p) production cross sections \\ +\moc{MT104} & (n,d) production cross sections \\ +\moc{MT105} & (n,t) production cross sections \\ +\moc{MT107} & (n,$\alpha$) production cross sections \\ +\moc{MT108} & (n,2$\alpha$) production cross sections \\ +\moc{Capture} & (n,$\gamma$) production cross sections \\ +\end{tabular} + +\end{ListeDeDescription} + +\subsubsection{Modification data input for module {\tt MPO:}}\label{sect:descmpo2} + +\begin{DataStructure}{Structure \dstr{mpo\_data2}} +$[$ \moc{EDIT} \dusa{iprint} $]$ \\ +$[$ \moc{STEP} \dusa{NAMDIR} $]$ \\ +$[[$ \dusa{parkey} \dusa{value} $]]$ \\ +$[$ \moc{SET} \dusa{xtr} $\{$ \moc{S} $|$ \moc{DAY} $|$ \moc{YEAR} $\}$ $]$ \\ +$[$ \moc{ICAL} {\tt >>} \dusa{ical} {\tt <<} $]$ \\ +{\tt ;} +\end{DataStructure} + +\goodbreak +\noindent where +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{EDIT}] keyword used to set \dusa{iprint}. + +\item[\dusa{iprint}] index used to control the printing in module {\tt +MPO:}. =0 for no print; =1 for minimum printing (default value). + +\item[\moc{STEP}] keyword used to access the {\sc mpo} database from a group named \dusa{NAMDIR}. +The default value is {\tt 'output\_0'}. + +\item[\dusa{NAMDIR}] access the {\sc mpo} database in the group named \dusa{NAMDIR}. This name is +the concatenation of prefix {\tt 'output\_'} with an integer $\ge 0$. + +\item[\dusa{parkey}] {\tt character*24} keyword associated to a user-defined global +parameter. + +\item[\dusa{value}] floating-point, integer or {\tt character*12} value of a user-defined +global parameter. + +\item[\moc{SET}] keyword used to recover the flux normalization factor already +stored on \dusa{BRNNAM} from a sub-directory corresponding to a specific time. + +\item[\dusa{xtr}] time associated with the current flux calculation. The +name of the sub-directory where this information is stored will be given by +`{\tt DEPL-DAT}'//{\tt CNN} where {\tt CNN} is a {\tt character*4} variable +defined by {\tt WRITE(CNN,'(I4)') INN} where {\tt INN} is an index associated +with the time \dusa{xtr}. + +\item[\moc{S}] keyword to specify that the time is given in seconds. + +\item[\moc{DAY}] keyword to specify that the time is given in days. + +\item[\moc{YEAR}] keyword to specify that the time is given in years. + +\item[\moc{ICAL}] keyword used to recover the last calculation index. + +\item[\dusa{ical}] \texttt{character*12} CLE-2000 variable name in which the last calculation index will be placed. + +\end{ListeDeDescription} + +\subsubsection{Modification (catenate) data input for module {\tt MPO:}}\label{sect:descmpo3} + +\vskip -0.5cm + +\begin{DataStructure}{Structure \dstr{mpo\_data3}} +$[$ \moc{EDIT} \dusa{iprint} $]$ \\ +$[$ \moc{STEP} \dusa{NAMDIR} $]$ \\ +$[[$ \dusa{parkey} \dusa{value} $]]$ \\ +$[$ \moc{WARNING-ONLY} $]$ \\ +{\tt ;} +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{EDIT}] keyword used to set \dusa{iprint}. + +\item[\dusa{iprint}] index used to control the printing in module {\tt +MPO:}. =0 for no print; =1 for minimum printing (default value). + +\item[\moc{STEP}] keyword used to access the {\sc mpo} database from a group named \dusa{NAMDIR}. +The default value is {\tt 'output\_0'}. + +\item[\dusa{NAMDIR}] access the {\sc mpo} database in the group named \dusa{NAMDIR}. This name is +the concatenation of prefix {\tt 'output\_'} with an integer $\ge 0$. + +\item[\dusa{parkey}] {\tt character*24} keyword associated to a +global parameter that is specific to \dusa{MPONAM} (not defined in \dusa{MPORHS}). + +\item[\dusa{value}] floating-point, integer or {\tt character*12} value of a user-defined +global parameter. + +\item[\moc{WARNING-ONLY}] This option is useful if an elementary calculation in \dusa{MPORHS} +is already present in \dusa{MPONAM}. If this keyword is set, a warning is send and the \dusa{MPONAM} values +are kept, otherwise the run is aborted (default). + +\end{ListeDeDescription} + +\subsubsection{Specification of discontinuity factor and equivalent albedo information}\label{sect:df_mpo} + +Discontinuity factors and equivalent albedos are written in groups {\tt flux} and {\tt discontinuity} included in each state point of the MPO file. +Specification of some datasets are slightly modified to hold this new information: + +\vskip -0.4cm + +\begin{DescriptionEnregistrement}{Group /output\_id/statept\_id/zone\_id/ of the MPO file}{7.5cm} +\label{tabl:tabiso202a} +\RealEnr + {ZONEFLUX}{$N_{\rm grp}$}{$\phi\, {\rm cm}^3$} + {Volume integrated multigroup flux within the zone.} +\DirEnr + {discontinuity} + {Discontinuity factor group within the zone. The specification is presented in Table~\ref{tabl:tabiso202b}.} +\end{DescriptionEnregistrement} + +\vskip -0.7cm + +\begin{DescriptionEnregistrement}{Group /output\_id/statept\_id/zone\_id/discontinuity/ of the MPO file}{7.5cm} +\label{tabl:tabiso202b} +\IntEnr + {NSURF}{$1$} + {Number $N_{\rm surf}$ of external surfaces (index $b$) where discontinuity factors are defined.} +\OptRealEnr + {DFACTOR}{$N_{\rm surf},N_{\rm grp}$}{$N_{\rm surf}\ge 1$}{$1$} + {Discontinuity factors $F^{\rm s}_{{\rm d},b,i,g}$ on external surfaces $b$ obtained with a nodal equivalence procedure within the zone.} +\OptRealEnr + {DFACTORGxG}{$N_{\rm surf},N_{\rm grp}^2$}{$N_{\rm surf}\ge 1$}{$1$} + {Matrix discontinuity factors $F^{\rm s}_{{\rm d},b,i,g\to h}$ on external surfaces $b$ obtained with the equivalent reflector model (ERM) within the zone.} +\end{DescriptionEnregistrement} + +\vskip -0.7cm + +\begin{DescriptionEnregistrement}{Group /output\_id/statept\_id/flux/ of the MPO file}{7.5cm} +\label{tabl:tabiso202c} +\IntEnr + {NALBP}{$1$} + {Number $N_{\rm alb}$ of physical albedo (index $a$) values in each energy group.} +\OptRealEnr + {ALBEDO}{$N_{\rm alb},N_{\rm grp}$}{$N_{\rm alb}\ge 1$}{1} + {Multigroup albedos $\beta_{a,g}$ obtained with a nodal equivalence procedure.} +\OptRealEnr + {ALBEDOGxG}{$N_{\rm alb},N_{\rm grp}^2$}{$N_{\rm alb}\ge 1$}{1} + {Matrix albedos $\beta_{a,g\to h}$ obtained with the equivalent reflector model (ERM).} +\end{DescriptionEnregistrement} + +\noindent where $N_{\rm mil}$ is the number of output mixtures (or zones in MPO terminology) and $N_{\rm grp}$ is the number of energy groups. + +\clearpage |
