summaryrefslogtreecommitdiff
path: root/doc/IGE335/Section3.25.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/IGE335/Section3.25.tex')
-rw-r--r--doc/IGE335/Section3.25.tex118
1 files changed, 118 insertions, 0 deletions
diff --git a/doc/IGE335/Section3.25.tex b/doc/IGE335/Section3.25.tex
new file mode 100644
index 0000000..85b5e28
--- /dev/null
+++ b/doc/IGE335/Section3.25.tex
@@ -0,0 +1,118 @@
+\subsection{The {\tt DMAC:} module}\label{sect:DMACData}
+
+This module is used to set fixed sources that can be used in the right hand term of an adjoint
+fixed source eigenvalue problem. This type of equation appears in generalized perturbation theory (GPT) applications.
+The fixed sources set in {\tt DMAC:} are corresponding to the gradient of a reference
+macrolib with respect to homogenization and condensation of the cross-section information. The gradient
+of a cross section $\Sigma(\bff(r))={\rm col}\{\Sigma_1(\bff(r)) \, , \ \Sigma_2(\bff(r))\}$ with respect to
+homogenization and condensation is defined as
+\begin{align*}
+\bff(\nabla)P\{\bff(\phi)(\zeta);\bff(r)\}=P\{\bff(\phi)(\bff(r))\}
+\left[\begin{matrix}{\Sigma_1(\bff(r))\over \left<\bff(\Sigma),\bff(\phi)\right>}-{1\over
+\left<\bff(\phi)\right>} \cr {\Sigma_2(\bff(r))\over \left<\bff(\Sigma),\bff(\phi)\right>}-{1\over
+\left<\bff(\phi)\right>}\end{matrix}\right]
+\end{align*}
+
+\noindent where the homogenized and condensed cross section is an homogeneous functional of the flux defined as
+$$
+P\{\bff(\phi)(r)\}={\left<\bff(\Sigma),\bff(\phi)\right>\over \left<\bff(\phi)\right>} \ \ \ .
+$$
+
+Each fixed source $\bff(\nabla)P\{\bff(\phi)(\zeta);\bff(r)\}$ is orthogonal to the flux $\bff(\phi)(\bff(r))$.
+
+\vskip 0.02cm
+
+The calling specifications are:
+
+\begin{DataStructure}{Structure \dstr{DMAC:}}
+\dusa{SOURCE}~\moc{:=}~\moc{DMAC:}~\dusa{FLUX}~$\{$~\dusa{MICRO}~$|$~\dusa{MACRO}~$\}$~\dusa{TRACK}~\moc{::}~\dstr{DMAC\_data} \\
+\end{DataStructure}
+
+\noindent where
+\begin{ListeDeDescription}{mmmmmmm}
+
+\item[\dusa{SOURCE}] {\tt character*12} name of a {\sc fixed sources} (type {\tt L\_SOURCE}) object open in creation
+mode. This object contains a set of adjoint fixed sources corresponding to different macro-regions, macro-groups and cross-section types
+present in the reference macrolib.
+
+\item[\dusa{FLUX}] {\tt character*12} name of a reference {\sc flux} (type {\tt L\_FLUX}) object open in read-only mode.
+
+\item[\dusa{MICRO}] {\tt character*12} name of a reference {\sc microlib} (type {\tt L\_LIBRARY}) object open in read-only mode. The information on
+the embedded macrolib is used.
+
+\item[\dusa{MACRO}] {\tt character*12} name of a reference {\sc macrolib} (type {\tt L\_MACROLIB}) object open in read-only mode.
+
+\item[\dusa{TRACK}] {\tt character*12} name of a reference {\sc tracking} (type {\tt L\_TRACK}) object open in read-only mode.
+
+\item[\dusa{DMAC\_data}] input data structure containing specific data (see \Sect{descDMAC}).
+
+\end{ListeDeDescription}
+
+\subsubsection{Data input for module {\tt DMAC:}}\label{sect:descDMAC}
+
+\vskip -0.5cm
+
+\begin{DataStructure}{Structure \dstr{DMAC\_data}}
+$[$~\moc{EDIT} \dusa{iprint}~$]$ \\
+$[$~\moc{RATE} \\
+\hskip 1.0cm $[$ \moc{MERG} $\{$ \moc{COMP} $|$ \moc{NONE} $|$ \\
+\hskip 2.0cm \moc{REGI} (\dusa{iregm}(ii),ii=1,nregio) $|$ \\
+\hskip 2.0cm \moc{MIX} $[$ (\dusa{imixm}(ii),ii=1,nbmix) $]~\}$ $]$ \\
+\hskip 1.0cm $[$ \moc{COND} $[~\{$ \moc{NONE} $|$ ( \dusa{icond}(ii), ii=1,ngcond) $\}~]~]$\\
+\moc{ENDR} $]$ \\
+{\tt ;}
+\end{DataStructure}
+
+\noindent where
+\begin{ListeDeDescription}{mmmmmmmm}
+
+\item[\moc{EDIT}] keyword used to set \dusa{iprint}.
+
+\item[\dusa{iprint}] index used to control the printing in module {\tt DMAC:}. =0 for no print; =1 for minimum printing (default value).
+
+\item[\moc{RATE}] keyword used to define the homogenization and condensation limits.
+
+\item[\moc{NONE}] keyword to deactivate the homogeneization or the condensation.
+
+\item[\moc{MERG}] keyword to specify that the neutron flux is to be
+homogenized over specified regions or mixtures.
+
+\item[\moc{REGI}] keyword to specify that the homogenization of the neutron
+flux will take place over the following regions. Here nregio$\le$\dusa{maxreg}
+with \dusa{maxreg} the maximum number of regions for which solutions were
+obtained.
+
+\item[\dusa{iregm}] array of homogenized region numbers to which are
+associated the old regions. In the editing routines a value of \dusa{iregm}=0
+allows the corresponding region to be neglected.
+
+\item[\moc{MIX}] keyword to specify that the homogenization of the neutron
+flux will take place over the following mixtures. Here
+we must have nbmix$\le$\dusa{maxmix} where \dusa{maxmix} is the maximum number
+of mixtures in the macroscopic cross section library.
+
+\item[\dusa{imixm}] array of homogenized region numbers to which are
+associated the material mixtures. In the editing routines a value of
+\dusa{imixm}=0 allows the corresponding isotopic mixtures to be neglected. For a mixture in this
+library which is not used in the geometry one should insert a value of 0 for the
+new region number associated with this mixture. By default, if \moc{MIX} is set and
+\dusa{imixm} is not set, \dusa{imixm(ii)}$=$\dusa{ii} is assumed.
+
+\item[\moc{COMP}] keyword to specify that the a complete homogenization is to
+take place.
+
+\item[\moc{COND}] keyword to specify that a group condensation of the flux is
+to be performed.
+
+\item[\dusa{icond}] array of increasing energy group limits that will be associated with
+each of the ngcond condensed groups. The final value of
+\dusa{icond} will automatically be set to \dusa{ngroup} while the values of
+\dusa{icond}$>$\dusa{ngroup} will be droped from the condensation.
+We must have ngcond$\le$\dusa{ngroup}. By default, if \moc{COND} is set and \dusa{icond}
+is not set, all energy groups are condensed together.
+
+\item[\moc{ENDR}] keyword used to terminate the definition of the homogenization and condensation.
+
+\end{ListeDeDescription}
+
+\eject