summaryrefslogtreecommitdiff
path: root/doc/IGE335/Section3.04_sybil.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/IGE335/Section3.04_sybil.tex')
-rw-r--r--doc/IGE335/Section3.04_sybil.tex200
1 files changed, 200 insertions, 0 deletions
diff --git a/doc/IGE335/Section3.04_sybil.tex b/doc/IGE335/Section3.04_sybil.tex
new file mode 100644
index 0000000..483b3dc
--- /dev/null
+++ b/doc/IGE335/Section3.04_sybil.tex
@@ -0,0 +1,200 @@
+\subsubsection{The {\tt SYBILT:} tracking module}\label{sect:SYBILData}
+
+The {\tt SYBILT:} module provides: {\sl (1)} an implementation of the collision probability (PIJ) method in 1D and pincell geometries (both Cartesian and hexagonal)
+or {\sl (2)} an implementation of the interface current (IC) method in 2D assembly geometries. The geometries that can be treated by the module \moc{SYBILT:} are
+
+\begin{enumerate}
+
+\item The homogeneous geometry \moc{HOMOGE}.
+
+\item The one-dimensional geometries \moc{SPHERE}, \moc{TUBE} and \moc{CAR1D}.\cite{ALCOL}
+
+\item The two-dimensional geometries \moc{CAR2D} and \moc{HEX} including
+respectively \moc{CARCEL} and \moc{HEXCEL} sub-geometries as well as
+\moc{VIRTUAL}
+sub-geometries.
+
+\item $S_{ij}$--type two-dimensional non-standard geometries.\cite{Apollo}
+
+\item The double heterogeneity option.\cite{BIHET}
+
+\end{enumerate}
+
+The calling specification for this module is:
+
+\begin{DataStructure}{Structure \dstr{SYBILT:}}
+\dusa{TRKNAM}
+\moc{:=} \moc{SYBILT:} $[$ \dusa{TRKNAM} $]$
+\dusa{GEONAM} \moc{::} \dstr{desctrack} \dstr{descsybil}
+\end{DataStructure}
+
+\noindent where
+\begin{ListeDeDescription}{mmmmmmm}
+
+\item[\dusa{TRKNAM}] {\tt character*12} name of the \dds{tracking} data
+structure that will contain region volume and surface area vectors in
+addition to region identification pointers and other tracking information.
+If \dusa{TRKNAM} also appears on the RHS, the previous tracking
+parameters will be applied by default on the current geometry.
+
+\item[\dusa{GEONAM}] {\tt character*12} name of the \dds{geometry} data
+structure.
+
+\item[\dstr{desctrack}] structure describing the general tracking data (see
+\Sect{TRKData})
+
+\item[\dstr{descsybil}] structure describing the transport tracking data
+specific to \moc{SYBILT:}.
+
+\end{ListeDeDescription}
+
+\vskip 0.15cm
+
+The \moc{SYBILT:} specific tracking data in \dstr{descsybil} is defined as
+
+\begin{DataStructure}{Structure \dstr{descsybil}}
+$[$ \moc{MAXJ} \dusa{maxcur} $]$ $[$ \moc{MAXZ} \dusa{maxint} $]$ \\
+$[$ \moc{HALT} $]$ \\
+$[$ \moc{QUA1} \dusa{iqua1} $]$ $[$ \moc{QUA2} \dusa{iqua2}
+\dusa{nsegment} $]$ $[$ $\{$ \moc{EQW} $|$ \moc{GAUS} $\}$ $]$ \\
+$[$ $\{$ \moc{ROTH} $|$ \moc{ROT+} $|$ \moc{DP00} $|$ \moc{DP01} $\}$ $]$ \\
+$[$ $\{$ \moc{WIGN} $|$ \moc{ASKE} $|$ \moc{SANC} $\}$ $]$ $[$ \moc{LIGN} $]$
+$[$ \moc{RECT} $]$ \\
+$[$ \moc{EPSJ} \dusa{epsj} $]$ \\
+$[~[$ \moc{QUAB} \dusa{iquab} $]~[~\{$ \moc{SAPO} $|$ \moc{HEBE} $|$ \moc{SLSI} $[$ \dusa{frtm} $]~\}~]~]$ \\
+{\tt ;}
+\end{DataStructure}
+
+\noindent where
+
+\begin{ListeDeDescription}{mmmmmmm}
+
+\item[\moc{MAXJ}] keyword to specify the maximum number of interface currents
+surrounding the blocks in the calculations.
+
+\item[\dusa{maxcur}] the maximum number of interface currents surrounding the
+blocks. The default value is \dusa{maxcur}=max(18,4$\times$\dusa{maxreg}) for the
+\moc{SYBILT:} module.
+
+\item[\moc{MAXZ}] keyword to specify the maximum amount of memory required to
+store the integration lines. An insufficiently large value can lead to an
+execution failure (core dump).
+
+\item[\dusa{maxint}] the maximum amount of memory required to store the
+integration lines. The default value is \dusa{maxint}=10000.
+
+\item[\moc{HALT}] keyword to specify that the program is to be stopped at the
+end of the geometry calculations. This option permits the geometry inputs to be
+checked, the number of blocks and interface currents to be calculated, and a
+conservative estimate of the memory required for storing the tracks to be made
+for mixed geometries.
+
+\item[\moc{QUA1}] keyword to specify the one-dimensional integration
+parameters.
+
+\item[\dusa{iqua1}] number of basis points for the angular integration of the
+blocks in a one-dimensional geometry. This parameter is not used for
+\moc{CAR1D} geometries. If a Gauss-Legendre or Gauss-Jacobi quadrature is used,
+the values of \dusa{iqua1} allowed are: 1 to 20, 24, 28, 32 or 64. The default
+value is \dusa{iqua1}=5.
+
+\item[\moc{QUA2}] keyword to specify the two-dimensional integration
+parameters.
+
+\item[\dusa{iqua2}] number of basis points for the angular integration of the
+blocks in a two-dimensional geometry appearing during assembly
+calculations. If a Gauss-Legendre or Gauss-Jacobi formula is used the values
+allowed for \dusa{iqua2} are: 1 to 20, 24, 28, 32 or 64. The default value is
+\dusa{iqua2}=3 and represents the number of angles in ($0,\pi/4$) for
+Cartesian geometries and ($0,\pi/6$) for hexagonal geometries.
+
+\item[\dusa{nsegment}] number of basis points for the spatial integration of
+the blocks in a two-dimensional geometry appearing during assembly
+calculations. The values of \dusa{nsegment} allowed are: 1 to 10. The default
+value is \dusa{nsegment}=3.
+
+\item[\moc{EQW}] keyword to specify the use of equal-weight quadrature.
+
+\item[\moc{GAUS}] keyword to specify the use of the Gauss-Legendre or the
+Gauss-Jacobi quadrature. This is the default option.
+
+\item[\moc{ROTH}] keyword to specify that the isotropic ($DP_{0}$) components
+of the inter-cell current is used with the incoming current being averaged over
+all the faces surrounding a cell. The global collision matrix is calculated in a
+annular model. Only used when 2--d assembly of cells are considered.
+
+\item[\moc{ROT+}] keyword to specify that the isotropic ($DP_{0}$) components
+of the inter-cell current is used. The global collision matrix is calculated in
+a annular model. Only used when 2--d assembly of cells are considered.
+
+\item[\moc{DP00}] keyword to specify that the isotropic ($DP_{0}$) components
+of the inter-cell current is used. The global collision matrix are computed
+explicitly. Only used when 2--d assembly of cells are considered.
+
+\item[\moc{DP01}] keyword to specify that the linearly anisotropic ($DP_{1}$)
+components of the inter-cell current are used. This hypothesis implies 12
+currents per cell in a cartesian geometry and 18 currents per cell for an
+hexagonal geometry. Linearly anisotropic reflection is used. Only used when 2--d
+assembly of cells are considered.
+
+\item[\moc{WIGN}] keyword to specify the use of a {\sl Wigner} cylinderization
+which preserves the volume of the external crown. This applies only in cases
+where the external surface is annular using the \moc{ROTH} or \moc{ROT+}
+options. Only used when 2--d assembly of cells are considered. Note that an
+assembly of rectangular cells having unequal volumes cannot use a {\sl Wigner}
+cylinderization.
+
+\item[\moc{ASKE}] keyword to specify the use of an {\sl Askew} cylinderization
+which preserves both the external surface of the cells and the material balance
+of the external crown (by a modification of its concentration). This applies
+only in cases where the external surface is annular using the \moc{ROTH} or
+\moc{ROT+} options. Only used when 2--d assembly of cells are considered. Note
+that an assembly of rectangular cells having unequal volumes can use an
+{\sl Askew} cylinderization.
+
+\item[\moc{SANC}] keyword to specify the use of a {\sl Sanchez} cylinderization.
+This model uses a {\sl Wigner} cylinderization for computing the collision $P_{ij}$
+and leakage $P_{iS}$ probabilities. However, the reciprocity and conservation
+relations used to compute the incoming $P_{Sj}$ and transmission $P_{SS}$
+probabilities are defined in the rectangular cell (with the exact
+surface).\cite{SANCHEZ}
+This applies where the external surface is annular using the \moc{ROTH} or
+\moc{ROT+} options. Only used when 2--d assembly of cells are considered. Note
+that an assembly of rectangular cells having unequal volumes can use a
+{\sl Sanchez} cylinderization. This is the default option.
+
+\item[\moc{LIGN}] keyword to specify that all the integration lines are to be
+printed. This option should only be used when absolutely necessary because it
+generates a rather large amount of output. Only used when 2--d assembly of cells
+are considered.
+
+\item[\moc{RECT}] keyword to specify that square cells are to be treated as if
+they were rectangular cells, with the inherent loss in performance that this
+entails. This option is of purely academic interest.
+
+\item[\moc{EPSJ}] keyword to specify the stopping criterion for the flux-current iterations of the
+interface current method in case the {\tt ARM} keyword is set in the {\tt ASM:} module or in
+a resonance self-shielding module ({\tt SHI:}, {\tt USS:}, etc.).
+
+\item[\dusa{epsj}] the stopping criterion value. The default value is \dusa{epsj} $= 0.5 \times 10^{-5}$.
+
+\item[\moc{QUAB}] keyword to specify the number of basis point for the
+numerical integration of each micro-structure in cases involving double
+heterogeneity (Bihet).
+
+\item[\dusa{iquab}] the number of basis point for the numerical integration of
+the collision probabilities in the micro-volumes using the Gauss-Jacobi
+formula. The values permitted are: 1 to 20, 24, 28, 32 or 64. The default value
+is \dusa{iquab}=5. If \dusa{iquab} is negative, its absolute value will be used in the She-Liu-Shi approach to determine the
+split level in the tracking used to compute the probability collisions.
+
+\item[\moc{SAPO}] use the Sanchez-Pomraning double-heterogeneity model.\cite{sapo}
+
+\item[\moc{HEBE}] use the Hebert double-heterogeneity model (default option).\cite{BIHET}
+
+\item[\moc{SLSI}] use the She-Liu-Shi double-heterogeneity model without shadow effect.\cite{She2017}
+
+\item[\dusa{frtm}] the minimum microstructure volume fraction used to compute the size of the equivalent cylinder in She-Liu-Shi approach. The default value is \dusa{frtm} $=0.05$.
+
+\end{ListeDeDescription}
+\eject