summaryrefslogtreecommitdiff
path: root/Utilib/src/ALEIGD.f
diff options
context:
space:
mode:
Diffstat (limited to 'Utilib/src/ALEIGD.f')
-rw-r--r--Utilib/src/ALEIGD.f97
1 files changed, 97 insertions, 0 deletions
diff --git a/Utilib/src/ALEIGD.f b/Utilib/src/ALEIGD.f
new file mode 100644
index 0000000..350387f
--- /dev/null
+++ b/Utilib/src/ALEIGD.f
@@ -0,0 +1,97 @@
+*DECK ALEIGD
+ SUBROUTINE ALEIGD (A,B,N,EVAL,EVECT,EPS,ITER)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* find the fondamental eigenvalue and corresponding eigenvector of
+* equation (A-EVAL*B)*EVECT=0 using the inverse power method.
+*
+*Copyright:
+* Copyright (C) 2002 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* A first coefficient matrix
+* B second coefficient matrix
+* N number of unknowns
+* EVECT initial estimate
+* EPS2 stopping criterion
+*
+*Parameters: output
+* EVAL fondamental eigenvalue
+* EVECT corresponding eigenvector
+* ITER number of iterations
+*
+*-----------------------------------------------------------------------
+*
+ IMPLICIT DOUBLE PRECISION (A-H,O-Z)
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER N,ITER
+ DOUBLE PRECISION A(N,N),B(N,N),EVAL,EVECT(N),EPS
+*----
+* LOCAL VARIABLES
+*----
+ PARAMETER (MMAX=1000)
+ DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: GAR
+*----
+* COMPUTE THE ITERATIVE MATRIX
+*----
+ CALL ALINVD (N,A,N,IER)
+ IF(IER.EQ.1) CALL XABORT('ALEIGD: SINGULAR MATRIX.')
+ ALLOCATE(GAR(N))
+ DO 30 I=1,N
+ DO 10 J=1,N
+ GAR(J)=A(I,J)
+10 CONTINUE
+ DO 25 J=1,N
+ A(I,J)=0.0D0
+ DO 20 K=1,N
+ A(I,J)=A(I,J)+GAR(K)*B(K,J)
+20 CONTINUE
+25 CONTINUE
+30 CONTINUE
+*----
+* PERFORM POWER ITERATIONS
+*----
+ TEST=0.0D0
+ ITER=0
+ EVAL=0.0D0
+40 ITER=ITER+1
+ IF(ITER.GT.MMAX) CALL XABORT('ALEIGD: UNABLE TO CONVERGE(1).')
+ S1=0.0D0
+ S2=0.0D0
+ DO 60 I=1,N
+ GAR(I)=0.0D0
+ DO 50 J=1,N
+ GAR(I)=GAR(I)+A(I,J)*EVECT(J)
+50 CONTINUE
+ S1=S1+GAR(I)*EVECT(I)
+ S2=S2+GAR(I)**2
+60 CONTINUE
+ IF(S2.EQ.0.0D0) CALL XABORT('ALEIGD: DIVIDE CHECK.')
+ ZZ=ABS(EVAL-S1/S2)
+ EVAL=S1/S2
+ ERR1=0.0D0
+ ERR2=0.0D0
+ DO 70 I=1,N
+ ERR1=MAX(ERR1,ABS(GAR(I)*EVAL))
+ ERR2=MAX(ERR2,ABS(GAR(I)*EVAL-EVECT(I)))
+ EVECT(I)=GAR(I)*EVAL
+70 CONTINUE
+ IF((ZZ.LE.EPS).AND.(ERR2.LE.ERR1*EPS)) THEN
+ DEALLOCATE(GAR)
+ RETURN
+ ENDIF
+ IF(ITER.EQ.1) TEST=ZZ
+ IF((ITER.GE.10).AND.(ZZ.GT.TEST)) CALL XABORT('ALEIGD: UNABLE TO'
+ 1 //' CONVERGE(2).')
+ GO TO 40
+ END