diff options
Diffstat (limited to 'Trivac/src/VALU4B.f')
| -rwxr-xr-x | Trivac/src/VALU4B.f | 115 |
1 files changed, 115 insertions, 0 deletions
diff --git a/Trivac/src/VALU4B.f b/Trivac/src/VALU4B.f new file mode 100755 index 0000000..f2e4edf --- /dev/null +++ b/Trivac/src/VALU4B.f @@ -0,0 +1,115 @@ +*DECK VALU4B + SUBROUTINE VALU4B(IELEM,NUN,LX,LY,X,Y,XXX,YYY,EVECT,ISS,KFLX, + + IXLG,IYLG,AXY) +* +*----------------------------------------------------------------------- +* +*Purpose: +* Interpolate the flux distribution for DUAL method in 2D. +* +*Copyright: +* Copyright (C) 2002 Ecole Polytechnique de Montreal +* This library is free software; you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation; either +* version 2.1 of the License, or (at your option) any later version +* +*Author(s): R. Chambon +* +*Parameters: input +* IELEM finite element order +* =1 : linear Raviart-Thomas +* =2 : parabolic Raviart-Thomas +* =3 : cubic Raviart-Thomas +* =4 : quartic Raviart-Thomas +* NUN number of unknowns +* LX number of elements along the X axis. +* LY number of elements along the Y axis. +* X Cartesian coordinates along the X axis where the flux is +* interpolated. +* Y Cartesian coordinates along the Y axis where the flux is +* interpolated. +* XXX Cartesian coordinates along the X axis. +* YYY Cartesian coordinates along the Y axis. +* EVECT variational coefficients of the flux. +* ISS mixture index assigned to each element. +* KFLX correspondence between local and global numbering. +* IXLG number of interpolated points according to X. +* IYLG number of interpolated points according to Y. +* +*Parameters: output +* AXY interpolated fluxes. +* +*---------------------------------------------------------------------- +* + IMPLICIT NONE +*---- +* SUBROUTINE ARGUMENTS +*---- + INTEGER IELEM,NUN,LX,LY,IXLG,IYLG,ISS(LX*LY),KFLX(LX*LY) + REAL X(IXLG),Y(IYLG),XXX(LX+1),YYY(LY+1),EVECT(NUN),AXY(IXLG,IYLG) +*---- +* LOCAL VARIABLES +*---- + INTEGER I,J,L,IS,JS,IEL,I1,I2,IE + REAL ORDO,ABSC,COEF(2,5),FLX(5),FLY(5) + REAL U,V +*---- +* compute coefficient for legendre polynomials +*---- + COEF(:2,:5)=0.0 + COEF(1,1)=1.0 + COEF(1,2)=2.*3.**0.5 + DO IE=1,3 + COEF(1,IE+2)=2.0*REAL(2*IE+1)/REAL(IE+1) + 1 *(REAL(2*IE+3)/REAL(2*IE+1))**0.5 + COEF(2,IE+2)=REAL(IE)/REAL(IE+1) + 1 *(REAL(2*IE+3)/REAL(2*IE-1))**0.5 + ENDDO +*---- +* perform interpolation +*---- + DO 105 J=1,IYLG + ORDO=Y(J) + DO 100 I=1,IXLG + ABSC=X(I) + AXY(I,J)=0.0 +* +* Find the finite element index containing the interpolation point + IS=0 + JS=0 + DO 20 L=1,LX + IS=L + IF((ABSC.GE.XXX(L)).AND.(ABSC.LE.XXX(L+1))) GO TO 30 + 20 CONTINUE + CALL XABORT('VALU4B: WRONG INTERPOLATION(1).') + 30 DO 40 L=1,LY + JS=L + IF((ORDO.GE.YYY(L)).AND.(ORDO.LE.YYY(L+1))) GO TO 70 + 40 CONTINUE + CALL XABORT('VALU4B: WRONG INTERPOLATION(2).') + 70 IEL=(JS-1)*LX+IS +* + IF(ISS(IEL).EQ.0) GO TO 100 + U=(ABSC-0.5*(XXX(IS)+XXX(IS+1)))/(XXX(IS+1)-XXX(IS)) + FLX(1)=COEF(1,1) + FLX(2)=COEF(1,2)*U + V=(ORDO-0.5*(YYY(JS)+YYY(JS+1)))/(YYY(JS+1)-YYY(JS)) + FLY(1)=COEF(1,1) + FLY(2)=COEF(1,2)*V + IF(IELEM.GE.2) THEN + DO IE=2,IELEM + FLX(IE+1)=FLX(IE)*U*COEF(1,IE+1)-FLX(IE-1)*COEF(2,IE+1) + FLY(IE+1)=FLY(IE)*V*COEF(1,IE+1)-FLY(IE-1)*COEF(2,IE+1) + ENDDO + ENDIF + DO 92 I2=1,IELEM + DO 91 I1=1,IELEM + L=(I2-1)*(IELEM)+I1 + AXY(I,J)=AXY(I,J)+EVECT(KFLX(IEL)+L-1)*FLX(I1)*FLY(I2) + 91 CONTINUE + 92 CONTINUE + 100 CONTINUE + 105 CONTINUE + RETURN + END |
