summaryrefslogtreecommitdiff
path: root/Trivac/src/TRIHWW.f
diff options
context:
space:
mode:
Diffstat (limited to 'Trivac/src/TRIHWW.f')
-rwxr-xr-xTrivac/src/TRIHWW.f418
1 files changed, 418 insertions, 0 deletions
diff --git a/Trivac/src/TRIHWW.f b/Trivac/src/TRIHWW.f
new file mode 100755
index 0000000..9f049d1
--- /dev/null
+++ b/Trivac/src/TRIHWW.f
@@ -0,0 +1,418 @@
+*DECK TRIHWW
+ SUBROUTINE TRIHWW(NBMIX,NBLOS,IELEM,LL4F,LL4W,MAT,SIDE,ZZ,FRZ,
+ 1 QFR,IPERT,KN,SGD,XSGD,MUW,IPBBW,LC,R,V,BBW,TTF,AW,C11W)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Assembly of system matrices for a Thomas-Raviart-Schneider (dual)
+* finite element method in hexagonal 3-D diffusion approximation.
+* Note: system matrices should be initialized by the calling program.
+*
+*Copyright:
+* Copyright (C) 2006 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* NBMIX number of mixtures.
+* NBLOS number of lozenges per direction, taking into account
+* mesh-splitting.
+* IELEM degree of the Lagrangian finite elements: =1 (linear);
+* =2 (parabolic); =3 (cubic).
+* ICOL type of quadrature: =1 (analytical integration);
+* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
+* ISPLH mesh-splitting index. Each hexagon is splitted into 3*ISPLH**2
+* lozenges.
+* LL4F number of flux components.
+* LL4W number of W-directed currents.
+* LL4X number of X-directed currents.
+* LL4Y number of Y-directed currents.
+* LL4Z number of Z-directed currents.
+* MAT mixture index assigned to each element.
+* SIDE side of an hexagon.
+* ZZ Z-directed mesh spacings.
+* FRZ volume fractions for the axial SYME boundary condition.
+* QFR element-ordered boundary conditions.
+* IPERT mixture permutation index.
+* KN ADI permutation indices for the volumes and currents.
+* SGD nuclear properties by material mixture:
+* SGD(L,1)= X-oriented diffusion coefficients;
+* SGD(L,2)= Y-oriented diffusion coefficients;
+* SGD(L,3)= Z-oriented diffusion coefficients;
+* SGD(L,4)= removal macroscopic cross section.
+* XSGD one over nuclear properties.
+* MUW W-directed compressed storage mode indices.
+* MUX X-directed compressed storage mode indices.
+* MUY Y-directed compressed storage mode indices.
+* MUZ Z-directed compressed storage mode indices.
+* IPBBW W-directed perdue storage indices.
+* IPBBX X-directed perdue storage indices.
+* IPBBY Y-directed perdue storage indices.
+* IPBBZ Z-directed perdue storage indices.
+* LC order of the unit matrices.
+* R unit matrix.
+* V unit matrix.
+* BBW W-directed flux-current matrices.
+* BBX X-directed flux-current matrices.
+* BBY Y-directed flux-current matrices.
+* BBZ Z-directed flux-current matrices.
+*
+*Parameters: output
+* TTF flux-flux matrices.
+* AW W-directed main current-current matrices. Dimensionned to
+* MUW(LL4W).
+* AX X-directed main current-current matrices. Dimensionned to
+* MUX(LL4X).
+* AY Y-directed main current-current matrices. Dimensionned to
+* MUY(LL4Y).
+* AZ Z-directed main current-current matrices. Dimensionned to
+* MUZ(LL4Z).
+* C11W W-directed main current-current matrices to be factorized.
+* Dimensionned to MUW(LL4W).
+* C11X X-directed main current-current matrices to be factorized.
+* Dimensionned to MUX(LL4X).
+* C11Y Y-directed main current-current matrices to be factorized.
+* Dimensionned to MUY(LL4Y).
+* C11Z Z-directed main current-current matrices to be factorized.
+* Dimensionned to MUZ(LL4Z).
+*
+*-----------------------------------------------------------------------
+*
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,MAT(3,NBLOS),IPERT(NBLOS),
+ 1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2),MUW(LL4W),IPBBW(2*IELEM,LL4W),LC
+ REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),SGD(NBMIX,4),
+ 1 XSGD(NBMIX,4),R(LC,LC),V(LC,LC-1),TTF(LL4F),BBW(2*IELEM,LL4W),
+ 2 AW(*),C11W(*)
+*----
+* LOCAL VARIABLES
+*----
+ DOUBLE PRECISION FFF,TTTT
+ REAL QQ(5,5)
+*----
+* W-ORIENTED COUPLINGS
+*----
+ DO 25 I0=1,IELEM
+ DO 20 J0=1,IELEM
+ FFF=0.0D0
+ DO 10 K0=2,IELEM
+ FFF=FFF+V(K0,I0)*V(K0,J0)/R(K0,K0)
+ 10 CONTINUE
+ IF(ABS(FFF).LE.1.0E-6) FFF=0.0D0
+ QQ(I0,J0)=REAL(FFF)
+ 20 CONTINUE
+ 25 CONTINUE
+*
+ NELEH=(IELEM+1)*IELEM**2
+ IIMAW=MUW(LL4W)
+ TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
+ NUM=0
+ DO 50 KEL=1,NBLOS
+ IF(IPERT(KEL).EQ.0) GO TO 50
+ NUM=NUM+1
+ IBM=MAT(1,IPERT(KEL))
+ IF(IBM.EQ.0) GO TO 50
+ DZ=ZZ(1,IPERT(KEL))
+ VOL0=REAL(TTTT*DZ*FRZ(KEL))
+ DINV=XSGD(IBM,1)
+ SIG3=SGD(IBM,3)/(DZ*DZ)
+ SIG4=SGD(IBM,4)
+ DO 34 K5=0,1
+ DO 33 K4=0,IELEM-1
+ DO 32 K3=0,IELEM-1
+ DO 31 K2=1,IELEM+1
+ KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ INW1=ABS(KNW1)
+ DO 30 K1=1,IELEM+1
+ KNW2=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
+ INW2=ABS(KNW2)
+ IF((KNW2.NE.0).AND.(KNW1.NE.0)) THEN
+ L=MUW(INW1)-INW1+INW2
+ SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
+ IF(K1.LE.K2) AW(L)=AW(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
+ IF(K1.EQ.K2) THEN
+ IF((K1.EQ.1).AND.(K5.EQ.0)) AW(L)=AW(L)-QFR(NUM,1)
+ IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AW(L)=AW(L)-QFR(NUM,2)
+ ENDIF
+ ENDIF
+ 30 CONTINUE
+ 31 CONTINUE
+ 32 CONTINUE
+ 33 CONTINUE
+ 34 CONTINUE
+ DO 42 K3=0,IELEM-1
+ DO 41 K2=0,IELEM-1
+ DO 40 K1=0,IELEM-1
+ JND1=(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
+ JND2=(KN(NUM,1)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
+ JND3=(KN(NUM,2)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
+ TTF(JND1)=TTF(JND1)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
+ TTF(JND2)=TTF(JND2)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
+ TTF(JND3)=TTF(JND3)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
+ 40 CONTINUE
+ 41 CONTINUE
+ 42 CONTINUE
+ 50 CONTINUE
+*----
+* COMPUTE THE W-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
+*----
+ DO 60 I0=1,IIMAW
+ C11W(I0)=-AW(I0)
+ 60 CONTINUE
+ MUIM1=0
+ DO 90 I=1,LL4W
+ MUI=MUW(I)
+ DO 80 J=I-(MUI-MUIM1)+1,I
+ KEY=MUI-I+J
+ DO 75 I0=1,2*IELEM
+ II=IPBBW(I0,I)
+ IF(II.EQ.0) GO TO 80
+ DO 70 J0=1,2*IELEM
+ JJ=IPBBW(J0,J)
+ IF(II.EQ.JJ) C11W(KEY)=C11W(KEY)+BBW(I0,I)*BBW(J0,J)/TTF(II)
+ 70 CONTINUE
+ 75 CONTINUE
+ 80 CONTINUE
+ MUIM1=MUI
+ 90 CONTINUE
+ RETURN
+ END
+*
+ SUBROUTINE TRIHWX(NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,MAT,SIDE,ZZ,
+ 1 FRZ,QFR,IPERT,KN,XSGD,MUX,IPBBX,LC,R,BBX,TTF,AX,C11X)
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,MAT(3,NBLOS),
+ 1 MUX(LL4X),IPBBX(2*IELEM,LL4X),LC,IPERT(NBLOS),
+ 2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
+ REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
+ 1 R(LC,LC),TTF(LL4F),BBX(2*IELEM,LL4X),AX(*),C11X(*)
+*----
+* LOCAL VARIABLES
+*----
+ DOUBLE PRECISION TTTT
+*----
+* X-ORIENTED COUPLINGS
+*----
+ NELEH=(IELEM+1)*IELEM**2
+ IIMAX=MUX(LL4X)
+ TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
+ NUM=0
+ DO 120 KEL=1,NBLOS
+ IF(IPERT(KEL).EQ.0) GO TO 120
+ NUM=NUM+1
+ IBM=MAT(1,IPERT(KEL))
+ IF(IBM.EQ.0) GO TO 120
+ VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
+ DINV=XSGD(IBM,1)
+ DO 114 K5=0,1
+ DO 113 K4=0,IELEM-1
+ DO 112 K3=0,IELEM-1
+ DO 111 K2=1,IELEM+1
+ KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ INX1=ABS(KNX1)-LL4W
+ DO 110 K1=1,IELEM+1
+ KNX2=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
+ INX2=ABS(KNX2)-LL4W
+ IF((KNX2.NE.0).AND.(KNX1.NE.0)) THEN
+ L=MUX(INX1)-INX1+INX2
+ SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
+ IF(K1.LE.K2) AX(L)=AX(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
+ IF(K1.EQ.K2) THEN
+ IF((K1.EQ.1).AND.(K5.EQ.0)) AX(L)=AX(L)-QFR(NUM,3)
+ IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AX(L)=AX(L)-QFR(NUM,4)
+ ENDIF
+ ENDIF
+ 110 CONTINUE
+ 111 CONTINUE
+ 112 CONTINUE
+ 113 CONTINUE
+ 114 CONTINUE
+ 120 CONTINUE
+*----
+* COMPUTE THE X-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
+*----
+ DO 130 I0=1,IIMAX
+ C11X(I0)=-AX(I0)
+ 130 CONTINUE
+ MUIM1=0
+ DO 160 I=1,LL4X
+ MUI=MUX(I)
+ DO 150 J=I-(MUI-MUIM1)+1,I
+ KEY=MUI-I+J
+ DO 145 I0=1,2*IELEM
+ II=IPBBX(I0,I)
+ IF(II.EQ.0) GO TO 150
+ DO 140 J0=1,2*IELEM
+ JJ=IPBBX(J0,J)
+ IF(II.EQ.JJ) C11X(KEY)=C11X(KEY)+BBX(I0,I)*BBX(J0,J)/TTF(II)
+ 140 CONTINUE
+ 145 CONTINUE
+ 150 CONTINUE
+ MUIM1=MUI
+ 160 CONTINUE
+ RETURN
+ END
+*
+ SUBROUTINE TRIHWY(NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,LL4Y,MAT,
+ 1 SIDE,ZZ,FRZ,QFR,IPERT,KN,XSGD,MUY,IPBBY,LC,R,BBY,TTF,AY,C11Y)
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,LL4Y,MAT(3,NBLOS),
+ 1 MUY(LL4Y),IPBBY(2*IELEM,LL4Y),LC,IPERT(NBLOS),
+ 2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
+ REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
+ 1 R(LC,LC),TTF(LL4F),BBY(2*IELEM,LL4Y),AY(*),C11Y(*)
+*----
+* LOCAL VARIABLES
+*----
+ DOUBLE PRECISION TTTT
+*----
+* Y-ORIENTED COUPLINGS
+*----
+ NELEH=(IELEM+1)*IELEM**2
+ IIMAY=MUY(LL4Y)
+ TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
+ NUM=0
+ DO 220 KEL=1,NBLOS
+ IF(IPERT(KEL).EQ.0) GO TO 220
+ NUM=NUM+1
+ IBM=MAT(1,IPERT(KEL))
+ IF(IBM.EQ.0) GO TO 220
+ VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
+ DINV=XSGD(IBM,1)
+ DO 214 K5=0,1
+ DO 213 K4=0,IELEM-1
+ DO 212 K3=0,IELEM-1
+ DO 211 K2=1,IELEM+1
+ KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ INY1=ABS(KNY1)-LL4W-LL4X
+ DO 210 K1=1,IELEM+1
+ KNY2=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
+ INY2=ABS(KNY2)-LL4W-LL4X
+ IF((KNY2.NE.0).AND.(KNY1.NE.0)) THEN
+ L=MUY(INY1)-INY1+INY2
+ SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
+ IF(K1.LE.K2) AY(L)=AY(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
+ IF(K1.EQ.K2) THEN
+ IF((K1.EQ.1).AND.(K5.EQ.0)) AY(L)=AY(L)-QFR(NUM,5)
+ IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AY(L)=AY(L)-QFR(NUM,6)
+ ENDIF
+ ENDIF
+ 210 CONTINUE
+ 211 CONTINUE
+ 212 CONTINUE
+ 213 CONTINUE
+ 214 CONTINUE
+ 220 CONTINUE
+*----
+* COMPUTE THE Y-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
+*----
+ DO 230 I0=1,IIMAY
+ C11Y(I0)=-AY(I0)
+ 230 CONTINUE
+ MUIM1=0
+ DO 260 I=1,LL4Y
+ MUI=MUY(I)
+ DO 250 J=I-(MUI-MUIM1)+1,I
+ KEY=MUI-I+J
+ DO 245 I0=1,2*IELEM
+ II=IPBBY(I0,I)
+ IF(II.EQ.0) GO TO 250
+ DO 240 J0=1,2*IELEM
+ JJ=IPBBY(J0,J)
+ IF(II.EQ.JJ) C11Y(KEY)=C11Y(KEY)+BBY(I0,I)*BBY(J0,J)/TTF(II)
+ 240 CONTINUE
+ 245 CONTINUE
+ 250 CONTINUE
+ MUIM1=MUI
+ 260 CONTINUE
+ RETURN
+ END
+*
+ SUBROUTINE TRIHWZ(NBMIX,NBLOS,IELEM,ICOL,LL4F,LL4W,LL4X,LL4Y,
+ 1 LL4Z,MAT,SIDE,ZZ,FRZ,QFR,IPERT,KN,XSGD,MUZ,IPBBZ,LC,R,BBZ,TTF,
+ 2 AZ,C11Z)
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER NBMIX,NBLOS,IELEM,ICOL,LL4F,LL4W,LL4X,LL4Y,LL4Z,
+ 1 MAT(3,NBLOS),MUZ(LL4Z),IPBBZ(2*IELEM,LL4Z),LC,IPERT(NBLOS),
+ 2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
+ REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
+ 1 R(LC,LC),TTF(LL4F),BBZ(2*IELEM,LL4Z),AZ(*),C11Z(*)
+*----
+* LOCAL VARIABLES
+*----
+ DOUBLE PRECISION TTTT
+*----
+* Z-ORIENTED COUPLINGS
+*----
+ NELEH=(IELEM+1)*IELEM**2
+ IIMAZ=MUZ(LL4Z)
+ TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
+ NUM=0
+ DO 340 KEL=1,NBLOS
+ IF(IPERT(KEL).EQ.0) GO TO 340
+ NUM=NUM+1
+ IBM=MAT(1,IPERT(KEL))
+ IF(IBM.EQ.0) GO TO 340
+ VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
+ DINV=XSGD(IBM,3)
+ DO 292 K5=0,2 ! THREE LOZENGES PER HEXAGON
+ DO 291 K2=0,IELEM-1
+ DO 290 K1=0,IELEM-1
+ KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
+ KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
+ INZ1=ABS(KNZ1)-LL4W-LL4X-LL4Y
+ INZ2=ABS(KNZ2)-LL4W-LL4X-LL4Y
+ IF(KNZ1.NE.0) THEN
+ KEY=MUZ(INZ1)
+ AZ(KEY)=AZ(KEY)-VOL0*R(1,1)*DINV-QFR(NUM,7)
+ ENDIF
+ IF(KNZ2.NE.0) THEN
+ KEY=MUZ(INZ2)
+ AZ(KEY)=AZ(KEY)-VOL0*R(IELEM+1,IELEM+1)*DINV-QFR(NUM,8)
+ ENDIF
+ IF((ICOL.NE.2).AND.(KNZ1.NE.0).AND.(KNZ2.NE.0)) THEN
+ IF(INZ2.GT.INZ1) KEY=MUZ(INZ2)-INZ2+INZ1
+ IF(INZ2.LE.INZ1) KEY=MUZ(INZ1)-INZ1+INZ2
+ SG=REAL(SIGN(1,KNZ1)*SIGN(1,KNZ2))
+ IF(INZ1.EQ.INZ2) SG=2.0*SG
+ AZ(KEY)=AZ(KEY)-SG*VOL0*R(IELEM+1,1)*DINV
+ ENDIF
+ 290 CONTINUE
+ 291 CONTINUE
+ 292 CONTINUE
+ 340 CONTINUE
+*
+ DO 350 I0=1,IIMAZ
+ C11Z(I0)=-AZ(I0)
+ 350 CONTINUE
+ MUIM1=0
+ DO 380 I=1,LL4Z
+ MUI=MUZ(I)
+ DO 370 J=I-(MUI-MUIM1)+1,I
+ KEY=MUI-I+J
+ DO 365 I0=1,2*IELEM
+ II=IPBBZ(I0,I)
+ IF(II.EQ.0) GO TO 370
+ DO 360 J0=1,2*IELEM
+ JJ=IPBBZ(J0,J)
+ IF(II.EQ.JJ) C11Z(KEY)=C11Z(KEY)+BBZ(I0,I)*BBZ(J0,J)/TTF(II)
+ 360 CONTINUE
+ 365 CONTINUE
+ 370 CONTINUE
+ MUIM1=MUI
+ 380 CONTINUE
+ RETURN
+ END